采用了DSSAT作物模式和区域气候模式相连接,模拟分析了A2和B2气候变化情景对中国主要地区灌溉水稻产量的影响。气候变化情景采用了IPCC发布的SRES(Special Report on Emissions Scenarios)系列的最新温室气体排放情景,气候情景值采用区域气候模式PRECIS(Provide Regional Climates for Impact Studies)的模拟值。通过研究站点水稻对A2和B2增温梯度敏感性的分析表明:温度增加,水稻产量呈下降趋势,随着温度增加,产量下降幅度增大。且在同一增温水平下,在南方热带地区的昆明和海口,产量下降幅度大于其他站点。A2和B2的产量相对于基准年(1961~1990年)的变化分别为:气候变化对不同站点的年代际水稻平均产量表现了正面或负面的影响(A2情景下为2.3%^-10.2%,B2情景下为4.0%^-13.6%),在某一些站点,水稻高产年和低产年的概率明显增加,产量分布趋于两极化。
Basic structure and algorithm of leaf mechanism photosynthesis model were described in first part of this study based on former researcher results. Then, considering some environmental factors influencing on leaf photosynthesis, three numerical sensitivity experiments were carried out. We simulated the sing le leaf net CO2 assimilation, which acts as a function of different light, carbo n dioxide and temperature conditions. The relationships between leaf net photosy nthetic rate of C3 and C4 plant with CO2 concentration intercellular, leaf tempe rature, and photosynthetic active radiation (PAR) were presented, respectively. The results show the numerical experiment may indicate the main characteristic o f plant photosynthesis in C3 and C4 plant, and further can be used to integrate with the regional climate model and act as land surface process scheme, and bett er understand the interaction between vegetation and atmosphere.