赵国俊
- 作品数:10 被引量:35H指数:3
- 供职机构:南京工程学院更多>>
- 发文基金:南京工程学院科研基金国家自然科学基金更多>>
- 相关领域:理学文化科学更多>>
- 一类半线性Keldysh型方程解的注记
- 2013年
- Keldysh方程是在研究跨音速管道流问题时导出的一个简化的数学模型,也是研究混合型偏微分方程模型的一个典型代表.对于其含有非零源项的退化双曲部分的初值问题,本文利用部分Fourier变换与ODE求解的办法给出了相应线性方程解的一个显式表达式及其全局一致估计,并在这个估计的基础上利用不动点定理建立了一类半线性问题的解的全局存在性.同时给出了解的奇性传播可以仅沿一支特征线传播的一个例子.
- 张康群孙福树赵国俊
- 关键词:初值问题奇性传播
- 数学建模思想在大学数学教学中的渗透被引量:18
- 2009年
- 数学建模就是应用数学知识和方法分析和解决实际问题。在大学数学教学中引进数学模型,渗透数学建模的思想与方法,不仅能大大激发学生学习数学的兴趣,提高他们学习数学和应用数学的能力,而且能够提升教师的教学水平,丰富现有的教学方法,拓宽课堂教学的内涵,有效提高大学数学的教学质量。
- 杨降龙赵国俊杨帆
- 关键词:数学建模大学数学教学
- 一类自伴与本质自伴的加权复合算子
- 2008年
- 研究了经典Bergman空间上加权复合算子的自伴性与本质自伴性.利用再生核函数刻化了自伴的加权复合算子;利用紧Carleson测度和紧Hankel算子给出了D上线性分式自映射所诱导的加权复合算子本质自伴的充要条件.
- 赵国俊郭树林
- 关键词:BERGMAN空间加权复合算子自伴线性分式
- 基于结构CRITIC法的学术期刊评价指标的赋权方法及比较被引量:6
- 2024年
- 在复杂、多元的期刊评价过程中经常涉及各评价指标的赋权问题。不同的评价指标赋权方案直接影响期刊评价的结果,因此如何确定指标权重是一个重要问题。文章基于CRITIC法的赋权原理,结合层次分析法,提出了一种全新的主客观赋权法相结合的权重确定方法,即结构CRITIC法。采用2022年《中国学术期刊影响因子年报(自然科学与工程技术)》中17种数学学术期刊的数据,使用包括原始的CRITIC法在内的其他三种赋权方法进行对比分析。结果表明,主观赋权法和客观赋权法赋权结果的差异性影响了评价结果的公认性;赋权方法的选择应当考虑其适用性;结构CRITIC法是在期刊评价中更能从主观和客观两个方面反映指标权重的计算方法。结构CRITIC法为学术期刊评价提供了一种新的赋权方法。
- 吴林娟赵国俊
- 关键词:学术期刊评价
- 具有线性分式符号的复合算子
- 本文在Hardy空间H<'2>上研究了具有线性分式符号的复合算子的范数,并对其生成的C<'*>代数进行了初步的探讨。
第一部分主要介绍与本文相关的预备知识,概念及记号。
第二部分主要研究了Hardy空...
- 赵国俊
- 关键词:复合算子线性分式范数算子乘积
- 文献传递
- 工科数学教学中网络研究性学习模式的借鉴被引量:1
- 2007年
- 文章就网络学习的全新沟通机制与研究性学习所追求科学与人文的和谐统一等内涵特征,结合工科数学自身的内容以及特点,论述了在教学过程中对网络研究性学习模式的借鉴。
- 郭树林赵国俊
- 关键词:研究性学习网络学习工科数学
- 具有线性分式符号的紧复合算子的范数
- 2009年
- 作者研究了Hardy空间H^2上符号为φ的紧复合算子C_φ的范数,其中φ为D上的线性分式自映射。且当φ满足某类限制条件时,得到了关于‖C_φ‖的一个方程,利用此方程,可以求出‖C_φ‖的值。对于其它情形,作者给出了计算‖C_φ‖的一个等价条件。
- 赵国俊曹广福曹志平
- 关键词:紧复合算子范数线性分式
- 函数空间上的一类算子方程的解
- 2022年
- 研究由Lebesgue空间的乘法算子和Hardy空间上的Toeplitz算子所构成的Sylvester算子方程的解.利用算子的谱以及对算子性质的刻画,给出方程存在唯一解的充分条件,在此基础上得到唯一解的具体形式以及与之相关的充要条件.
- 赵国俊
- 关键词:SYLVESTER方程HARDY空间TOEPLITZ算子乘法算子
- 工科数学网络研究性学习的系统构建与质量评价被引量:3
- 2008年
- 工科数学由若干门课程组成,各门课程中均包含一些具有启发性、趣味性的知识点,有效利用这些内容、特点以及网络多媒体的跨时空交互功能,可构建起工科数学课程研究性学习系统。文章介绍了设计思路与实现方法,并结合实际,探讨了相应的质量监控与评价体系。
- 郭树林赵国俊
- 关键词:网络研究性学习工科数学
- 数学文化观视角下的高校数学教育被引量:7
- 2013年
- 随着人们认识与研究的逐步深入,新的高校数学教育的观点与方法不断涌现,高校数学教育的理论成果日趋丰富,而数学文化为研究高等数学教育提供了一个新的视角。数学文化具有统一性、民族性和可塑性的特性。从数学文化观的角度看,高校数学教育是综合性教育,同时也是人性的教育。数学文化视角下实践高校数学教育需明确基于数学文化观的基本教育理念;倡导高校数学教育的多元化;构建自由而宽松的文化环境。
- 赵国俊孙余进
- 关键词:数学文化数学教育高校教育