张云锋 作品数:3 被引量:14 H指数:3 供职机构: 西安电子科技大学通信工程学院综合业务网理论与关键技术国家重点实验室 更多>> 发文基金: 国家自然科学基金 CAST创新基金项目 高等学校学科创新引智计划 更多>> 相关领域: 电子电信 自动化与计算机技术 更多>>
一种新的基于MAP的纹理自适应超分辨率图像复原算法 被引量:6 2009年 本文论证了超分辨率图像复原计算中的两个性质,并基于此在MAP(Maximum A Posteriori)框架下提出了一种新的纹理自适应算法.算法首先根据低分辨率图像和高分辨率图像近似计算的可类比性质计算初始图像,使初始图像的质量更高,并根据超分辨率复原图像阶跃边缘的陡坡性质,将三边滤波正则化应用于迭代运算中,更好地保护了图像的陡坡和屋顶边缘.算法可根据图像的纹理自动计算初始图像融合参数以及正则化函数中的梯度阈值等参数,解决了以往超分辨率图像复原算法参数调整复杂的问题.实验结果表明,本文算法在没有人工参与的情况下,重建图像的客观评价和主观质量均有明显提高. 宋锐 吴成柯 封颖 张云锋关键词:超分辨率 MAP 面向自动协同驾驶的多车编队任务分配策略 被引量:5 2020年 自动驾驶的实现需要大量车载传感器的支持,然而,在有限车载计算资源条件下,由传感器所产生的庞大数据量使得自动驾驶任务的实时性难以满足,成为阻碍自动驾驶技术进一步发展的重要阻力。通过将驾驶任务进行协作处理,因而充分利用多个协作车辆的计算资源,自动协同驾驶成为解决该问题的新途径。而如何形成多车编队并实现编队中驾驶任务分配则是实现自动协同驾驶的关键。该文首先采用排队理论G/G/1模型建立一种普适性车辆编队网络拓扑分析模型,充分考虑编队内车辆间的任务协作能力和单个车辆的任务负荷,得出任务的处理时延和车辆系统中的平均任务数;其次,采用支持向量机(SVM)方法,基于车辆的负荷程度及处理能力将车辆的“空闲”、“繁忙”两状态进行分类,进而建立针对车辆协作任务分配的候选车辆集。最后,基于上述分析,该文提出面向多车编队协同驾驶的任务均衡策略——基于分类的贪婪均衡策略(C-GBS),以充分平衡编队内所有车辆的任务负荷并利用不同车辆的任务处理能力。仿真结果表明,该策略能够减小重负荷网络中的任务处理时延,有效提升自动驾驶车辆的任务处理效率。 李长乐 张云锋 张尧 毛国强 贾存兴关键词:排队论 支持向量机 自适应估计模糊参数的最大后验概率超分辨率复原算法 被引量:3 2008年 为降低最大后验概率(MAP)超分辨率图像复原算法中模糊参数调整的复杂度,减少迭代运算量,提出了一种超分辨率复原新算法.先抽取一幅低分辨率图像作为参考图像,用其余低分辨率图像估计参考图像,通过训练模糊参数使估计的均方误差最小,自适应地估计最佳模糊参数.然后根据高分辨率图像和参考图像计算多项式之间的可类比性和估计误差变化的线性相关性,将训练结果直接用于超分辨率复原.复原时先利用最佳模糊参数将全部的低分辨率图像信息融合到高分辨率初始图像中,改进了复原运算的处理流程.相对于其他MAP复原算法,新算法不需要人工调整模糊参数,并且只需3次迭代即可获得稳定解,大大减少了迭代运算量.对真实图像序列的实验结果表明,新算法更好地保持了图像细节,复原图像的纹理更清晰. 宋锐 贾媛 吴成柯 封颖 张云锋关键词:超分辨率 图像复原 自适应估计