刘丽琴
- 作品数:4 被引量:23H指数:1
- 供职机构:辽宁师范大学数学学院更多>>
- 相关领域:理学自动化与计算机技术更多>>
- 基于人为误差的支持向量机——AE-SVM
- 2008年
- 传统的支持向量机是将分类问题转化成二次规划问题来解决的。针对传统的支持向量机算法及其变形算法忽略了训练集数据含有较大人为误差参与时其算法精度所存在的保障问题,提出了基于人为误差的支持向量机(artificial error—support vector machine以下称AE-SVM)的基本理论,并建立了AE-SVM的理论模型。该模型是C-SVM模型的改进和推广。
- 王炜王淑艳郭小明刘丽琴
- 关键词:统计学习理论
- 基于抗白噪声理论的支持向量机
- 作为上世纪九十年代兴起的一种新的机器学习技术,支持向量机(Support Vector Maclline,SVM)在许多领域都取得了成功的应用。但它的应用其实大多局限于常见的标准化或者说“干净”的数据分布情况,对于在实际...
- 刘丽琴
- 关键词:支持向量机核函数
- 文献传递
- 关于核函数选取的方法被引量:23
- 2008年
- 在支持向量机技术中,核函数选取的好坏直接影响支持向量机的性能.目前关于核函数的研究在理论和应用两方面均取得了一定的成果,但还未深入到足以指导核函数的选取.本文从混合核函数着手研究,建立若干选取规则,得到关于核函数选取的方法.采用平衡约束规划(MPEC)模型来优化选取参数,解决了参数的选取问题.
- 王炜郭小明王淑艳刘丽琴
- 关键词:支持向量机混合核函数
- 基于抗白噪声理论的支持向量机
- 2008年
- 支持向量机(SVM)是在统计学习理论基础上发展起来的一种新的机器学习方法.具有泛化能力强,全局最优等特点.我们针对于传统的支持向量机算法忽略了当采取的训练集中有噪声干扰的情况,通过改造原有的经验风险和调节核函数中的参数,达到抑制或者减弱随机噪声干扰的目的,并具体地给出了抗高斯白噪声的支持向量机模型.
- 刘丽琴王淑艳郭小明
- 关键词:支持向量机核函数高斯白噪声