您的位置: 专家智库 > >

杨宏波

作品数:13 被引量:26H指数:4
供职机构:昆明医科大学更多>>
发文基金:国家自然科学基金更多>>
相关领域:医药卫生电子电信自动化与计算机技术更多>>

文献类型

  • 10篇期刊文章
  • 2篇专利
  • 1篇学位论文

领域

  • 8篇医药卫生
  • 7篇电子电信
  • 5篇自动化与计算...

主题

  • 7篇心音
  • 5篇先天性
  • 4篇动脉
  • 4篇心病
  • 4篇心脏
  • 4篇心脏病
  • 4篇先天
  • 4篇先天性心脏
  • 4篇先天性心脏病
  • 4篇先心
  • 4篇先心病
  • 3篇时频
  • 3篇光学相干
  • 3篇光学相干断层
  • 3篇肺动脉
  • 3篇肺动脉高压
  • 3篇斑块
  • 2篇蛋白
  • 2篇蛋白酶
  • 2篇断层扫描

机构

  • 13篇昆明医科大学
  • 9篇云南大学
  • 5篇云南省阜外心...
  • 1篇国家心血管病...

作者

  • 13篇杨宏波
  • 7篇王威廉
  • 7篇潘家华
  • 7篇郭涛
  • 5篇孙静
  • 2篇孙煌
  • 1篇孟照辉
  • 1篇张戈军
  • 1篇李锐洁
  • 1篇宗容
  • 1篇彭云珠
  • 1篇陈成
  • 1篇喻雯

传媒

  • 3篇生物医学工程...
  • 2篇计算机科学
  • 1篇临床心血管病...
  • 1篇计算机应用与...
  • 1篇实用医学杂志
  • 1篇重庆医学
  • 1篇计算机仿真

年份

  • 4篇2024
  • 1篇2023
  • 4篇2022
  • 1篇2019
  • 1篇2017
  • 1篇2016
  • 1篇2015
13 条 记 录,以下是 1-10
排序方式:
基于时频组合特征与自适应模糊神经网络的心音分类算法被引量:1
2023年
特征提取方法和分类器的选择是心音分类中的两个重要环节。为了充分捕捉心音信号中的病理性特征,研究中引入了一种结合梅尔频率倒谱系数(MFCC)和功率谱密度(PSD)的特征提取方法。与目前常规分类器不同,研究中选择了自适应模糊神经网络(ANFIS)为分类器。在实验设计方面,选取了不同时期、不同频率范围的PSD进行对比,选出分类效果最佳的特征,并采用均值PSD、标准差PSD、方差PSD和中位PSD四种不同的功率谱统计特性进行对比。通过实验比较,心音收缩期100~300 Hz的中位PSD和MFCC组合特征有最好的效果,在准确率、精确率、灵敏度、特异度和F1得分上分别达到96.50%、99.27%、93.35%、99.60%和96.35%。结果显示本研究所提算法对先心病辅助诊断具有较大帮助。
汪琴杨宏波潘家华田英杰郭涛郭涛
关键词:模糊神经网络功率谱密度先天性心脏病
一种可听呼吸音的新型听诊器
一种可听呼吸音的新型听诊器,涉及听诊器技术领域,包括两组耳件,每组所述耳件的底部均套接有胶体连接管,两组所述胶体连接管的自由端共同连接有第一三通管,所述第一三通管的底部连接有胶体总管,所述胶体总管的底部连接有第二三通管,...
杨宏波潘家华郭涛王威廉
文献传递
基于Bi-LSTM与状态约束的心音分割算法
2024年
心音分割是进行准确心音分类的前提。针对心音分割,提出一种基于双向长短时记忆网络(Bi-LSTM)与状态约束的算法。该文通过网格法确定Bi-LSTM网络中的最佳参数,并训练出心音状态识别模型;统计Bi-LSTM预测的心音状态持续时间,并计算自相关参数;利用自相关参数和心音固有状态转移规则对预测的心音状态进行约束处理。使用五折交叉验证法在PhysioNet/CinC 2016数据集上进行测试,该算法与同类算法相比,整体性能更佳。
王幸之杨宏波宗容宗容王威廉王威廉
关键词:心音图自相关
基于人工智能的辅助诊断在先天性房间隔缺损筛查中的应用研究被引量:6
2019年
目的评估基于人工智能的辅助诊断在先天性房间隔缺损(atrial septal defect,ASD)筛查中的应用价值。方法2014年9月至2018年9月,在先心病筛查中对10 142名0~14岁儿童进行人工听诊及基于人工智能的辅助诊断。人工智能对已确诊ASD的儿童采集标准部位心音,通过去噪和提取特征信息学习,实现心音和ASD对应的辅助诊断;在筛查中随机分为人工听诊组(n=6 280)和人工智能组(n=3762),比较ASD的发现率;在确诊的162例患儿中比较人工听诊和人工智能诊断的准确率。结果人工智能共学习6 253个ASD患儿和6 544个正常儿童心音周期;采用学习所得辅助诊断技术听诊3 762名儿童,诊断率(4.5‰)与人工听诊(1.9‰)相比差异无统计学意义(P>0.05);对162例确诊患儿进行人工智能辅助诊断,准确率为69.1%。结论基于人工智能的辅助诊断在先天性ASD筛查中是一个有效的辅助手段。
杨宏波潘家华王威廉郭涛张戈军唐永研许虹莉
关键词:先天性房间隔缺损人工智能
光学相干断层成像评价易损斑块的应用进展被引量:5
2015年
急性心血管事件是致死率极高的疾病,粥样斑块破裂后血栓形成被认为是许多急性心血管事件的直接原因。在过去几十年里,光学相干断层成像(OCT)逐渐被运用于准确识别易损斑块,OCT是一种利用光学原理的血管内成像新技术,具有高分辨率及良好的组织相关性。现就将OCT评价易损斑块的应用进展做一综述。
杨宏波孙煌潘家华
关键词:光学相干断层成像易损斑块
基于心电信号的先心病肺动脉高压识别分类研究被引量:1
2022年
先天性心脏病相关性肺动脉高压(Pulmonary Arterial Hypertension,PAH)在临床上有着很高的发病率、致残率和病死率,其确诊主要采用右心导管测量平均肺动脉压,这种方法有创且操作性要求高,不便在筛查中采用,因此探索一种非介入式CHD-PAH智能辅助诊断方案意义重大。在先心病的基础上对CHD-PAH进行研究,从分析ECG入手,通过预处理、心拍分割、波形检测、特征提取、数据扩充、分类识别等手段对CHD-PAH进行建模预测。在Christov_segmenter算法基础上,利用差分阈值和局部峰值改进,检测QRS波、P波和T波,最后提取基于时间和幅度的双模态特征。为了拟合出最佳的分类模型,实验采用了支持向量机、随机森林及K邻近等分类器,并设计基于T分布的麻雀搜索算法改进支持向量机。实验共使用460段时长为20s的1导联ECG信号进行训练和测试。实验结果表明,所提算法优化的支持向量机模型预测准确率、特异度和灵敏度分别可达99.76%,99.80%,99.73%。
韩宇森杨宏波孙静潘家华王威廉
关键词:肺动脉高压分类器
基于音频时频特征的非接触新冠肺炎检测方法
本发明涉及新冠肺炎的检测、筛查。本发明所述的基于音频时频特征的非接触新冠肺炎检测方法包括以下步骤:步骤S1:通过设定音频信号的采集标准,让受试者根据采集标准自行利用身边可用的音频采集设备,采集呼吸音、咳嗽音与话音,采样频...
杨宏波马鹏钥成焱雄潘家华郭涛王威廉
基于MFCC与GFCC混合特征的先心病心音分类研究被引量:6
2022年
为提高心音信号的分类准确率,提出一种基于梅尔频率倒谱系数与Gammatone频率倒谱系数的混合特征(MFCC与GFCC混合特征)的先心病心音信号分类算法。首先用db6小波双参数可调阈值函数对心音信号降噪,再用基于逻辑回归的隐半马尔可夫模型自动分段以提取单个心动周期;然后对信号加汉宁自卷积窗并提取心音的MFCC与GFCC混合特征,再用主成分分析法进行降维,以减少计算量;最后采用深度学习模型Inception v4进行分类识别,并与其它传统识别方法做了分类比较研究。用所提出的方法对1600例心音样本进行了分类测试,实验结果表明,上述方法对先心病心音的分类准确率比传统识别方法有明显提高,分类准确率达91.25%。
陈成潘家华孙静杨宏波
关键词:先心病心音信号
应用OCT评价冠状动脉斑块性质及其与MMP7、MMP9、MMP12的相关关系
[目的]在冠脉造影后采用冠脉内光学相干断层扫描(OCT)评价斑块性质及其各种特征与血清基质金属蛋白酶7(MMP7)、基质金属蛋白酶9(MMP9)、基质金属蛋白酶12(MMP12)水平的关系。[方法]将昆明医科大学第一附属...
杨宏波
关键词:易损斑块光学相干断层扫描基质金属蛋白酶
文献传递
基于第二心音统计特征的先天性心脏病相关肺动脉高压诊断方法被引量:1
2024年
针对先天性心脏病相关肺动脉高压听诊特征不明显,已有的机器辅助诊断算法相对复杂等问题,提出一种基于第二心音信号高频分量统计特征的分析方法。首先,采用端点检测自适应分割方法提取第二心音。其次,使用离散小波变换分解出高频分量,并提取该分量的赫斯特(Hurst)指数、勒佩尔-齐夫(Lempel-Ziv)信息和样本熵等统计特征。最后,使用这些特征训练极端梯度提升算法(XGBoost)分类器,在三分类中准确率达到了80.45%。该方法无需进行降噪处理,特征提取速度快,且只需三个特征即可实现较好的多分类效果,有望用于先天性心脏病相关肺动脉高压早期筛查。
杨炫锴孙静杨宏波郭涛郭涛王威廉
关键词:心音先天性心脏病肺动脉高压统计特征
共2页<12>
聚类工具0