您的位置: 专家智库 > >

陶攀

作品数:12 被引量:45H指数:5
供职机构:中国科学院成都计算机应用研究所更多>>
发文基金:四川省科技支撑计划中国科学院西部之光基金更多>>
相关领域:自动化与计算机技术医药卫生更多>>

文献类型

  • 12篇中文期刊文章

领域

  • 11篇自动化与计算...
  • 1篇医药卫生

主题

  • 7篇神经网
  • 7篇神经网络
  • 6篇网络
  • 6篇卷积
  • 6篇卷积神经网络
  • 5篇心动图
  • 5篇超声心动图
  • 4篇图像
  • 3篇可视化
  • 2篇心室
  • 2篇左心
  • 2篇左心室
  • 2篇金字塔分解
  • 2篇超声
  • 1篇袋模型
  • 1篇倒排索引
  • 1篇点检测算法
  • 1篇对齐
  • 1篇多类别分类
  • 1篇心脏

机构

  • 12篇中国科学院成...
  • 11篇中国科学院大...
  • 1篇贵州医科大学

作者

  • 12篇陶攀
  • 8篇付忠良
  • 7篇朱锴
  • 5篇王莉莉
  • 2篇姚宇
  • 2篇钟勇
  • 2篇李振东
  • 1篇伍岳庆
  • 1篇胡鑫

传媒

  • 4篇计算机应用
  • 3篇哈尔滨工业大...
  • 2篇生物医学工程...
  • 1篇吉林大学学报...
  • 1篇中国图象图形...
  • 1篇工程科学与技...

年份

  • 1篇2019
  • 6篇2018
  • 5篇2017
12 条 记 录,以下是 1-10
排序方式:
基于深度卷积特征的图像实例检索方法被引量:2
2019年
针对计算机视觉领域的图像实例检索问题,提出了一种从卷积神经网络提取图像全局特征表示和目标对象区域特征表示的图像实例检索方法。该方法首先利用区域生成网络学习目标实例的区域位置坐标,并结合相关卷积网络提取的图像区域特征构建由过滤阶段和空间重排阶段组成的实例检索系统。在此基础上提出过滤阶段和空间重排两阶段查询扩展方法进一步提高系统检索性能。最后,提出了两种微调网络模型策略,更新网络前两个卷积层后所有层的权重以适应图像实例检索和位置坐标。通过在两个公用实例检索数据集(Oxford Buildings 5k和Paris Buildings 6k)上进行详尽实验验证,结果表明,提出的基于深度卷积特征的图像实例检索方法有效地提高了图像实例检索的准确率和可靠性,降低了实例检索误检率,得到的实例位置更加准确。
李振东钟勇钟勇陈蔓
关键词:图像处理图像检索卷积神经网络特征提取
应用多索引加法量化编码的近邻检索算法被引量:3
2018年
目的 海量图像检索技术是计算机视觉领域研究热点之一,一个基本的思路是对数据库中所有图像提取特征,然后定义特征相似性度量,进行近邻检索。海量图像检索技术,关键的是设计满足存储需求和效率的近邻检索算法。为了提高图像视觉特征的近似表示精度和降低图像视觉特征的存储空间需求,提出了一种多索引加法量化方法。方法 由于线性搜索算法复杂度高,而且为了满足检索的实时性,需把图像描述符存储在内存中,不能满足大规模检索系统的需求。基于非线性检索的优越性,本文对非穷尽搜索的多索引结构和量化编码进行了探索新研究。利用多索引结构将原始数据空间划分成多个子空间,把每个子空间数据项分配到不同的倒排列表中,然后使用压缩编码的加法量化方法编码倒排列表中的残差数据项,进一步减少对原始空间的量化损失。在近邻检索时采用非穷尽搜索的策略,只在少数倒排列表中检索近邻项,可以大大减少检索时间成本,而且检索过程中不用存储原始数据,只需存储数据集中每个数据项在加法量化码书中的码字索引,大大减少内存消耗。结果 为了验证算法的有效性,在3个数据集SIFT、GIST、MNIST上进行测试,召回率相比近几年算法提升4%~15%,平均查准率提高12%左右,检索时间与最快的算法持平。结论 本文提出的多索引加法量化编码算法,有效改善了图像视觉特征的近似表示精度和存储空间需求,并提升了在大规模数据集的检索准确率和召回率。本文算法主要针对特征进行近邻检索,适用于海量图像以及其他多媒体数据的近邻检索。
刘恒姚宇曾玲陶攀
关键词:倒排索引矢量量化
基于自适应均值漂移的超声心动图左心室分割方法被引量:7
2018年
利用超声心动图进行心室分割能够获得心室容积参数,对评价心功能有重要意义。但超声图像有噪声大、难以分割等特点,仅仅靠人工对目标区域进行手动分割工作量巨大,且目前自动分割技术尚无法保证分割精度。针对这些问题,本文提出了一种全新的算法框架对心室结构进行了分割提取。首先,采用更快速的基于区域的卷积神经网络目标检测算法对目标区域进行定位,得到感兴趣区域;然后使用K均值(K-means)算法对目标区域进行初始聚类;接着使用一种自适应核函数带宽的均值漂移(mean shift)算法进行分割;最后采用种子填充算法提取目标区域。该算法结构实现了自动提取分割目标区域,免去了人工定位的过程。实验表明,在定量评价标准下,这种分割框架能够对目标区域进行精确的提取,同时提出的自适应均值漂移算法较传统固定带宽均值漂移算法更稳定,且分割效果更好。研究结果显示,本文所述方法有助于实现超声心动图左心室切面的自动分割。
朱锴付忠良付忠良陶攀
关键词:像素聚类
基于监督下降方法的左心室超声图像分割被引量:3
2018年
针对基于表观模型的图像分割算法在特征点迭代定位过程中计算量过大、对非线性局部特征的优化较为困难等问题,采用一种基于监督学习的梯度下降算法,建立4层多分辨率金字塔模型,并使用一种基于巴氏系数的特征提取函数(B-SIFT)替代原方法中的尺度不变特征变换(SIFT)特征,对左心室心内膜及心外膜进行特征点定位。首先对训练集进行归一化处理,统一经食道超声心动图像(TEE)的尺度;然后建立基于多分辨率金字塔和B-SIFT特征的监督下降模型,得到特征点趋近于真实值的梯度下降方向序列;最后将得到的方向序列作用于测试集中,得到最终的左心室分割结果。将该方法与传统监督下降方法进行对比,其得到的分割平均误差相比传统监督下降方法降低了47%,迭代得到的最终值相对单一尺度的梯度下降算法更加逼近真实值。
魏雨汐伍岳庆陶攀姚宇
关键词:左心室特征点定位超声心动图图像分割尺度不变特征变换
基于多分类AdaBoost改进算法的TEE标准切面分类被引量:1
2017年
针对超声图像样本冗余、不同标准切面因疾病导致的高度相似性、感兴趣区域定位不准确问题,提出一种结合特征袋(BOF)特征、主动学习方法和多分类AdaBoost改进算法的经食管超声心动图(TEE)标准切面分类方法。首先采用BOF方法对超声图像进行描述;然后采用主动学习方法选择对分类器最有价值的样本作为训练集;最后,在AdaBoost算法对弱分类器的迭代训练中,根据临时强分类器的分类情况调整样本更新规则,实现对多分类AdaBoost算法的改进和TEE标准切面的分类。在TEE数据集和三个UCI数据集上的实验表明,相比AdaBoost.SAMME算法、多分类支持向量机(SVM)算法、BP神经网络和AdaBoost.M2算法,所提算法在各个数据集上的G-mean指标、整体分类准确率和大多数类别分类准确率都有不同程度的提升,且比较难分的类别分类准确率提升最为显著。实验结果表明,在包含类间相似样本的数据集上,分类器的性能有显著提升。
王莉莉付忠良陶攀朱锴
基于深度学习的医学计算机辅助检测方法研究被引量:5
2018年
针对自动检测医学图像中指定目标时存在的问题,提出了一种基于深度学习自动检测目标位置和估计对象姿态的算法。该算法基于区域深度卷积神经网络和目标结构的先验知识,采用区域生成候选框网络、感兴趣区域池化策略,引入包括分类损失、边框位置回归定位损失和像平面内朝向损失的多任务损失函数,近似优化一个端到端的有监督定位网络,能快速地对医学图像中目标自动定位,有效地为下一步的分割和参数自动提取提供定位结果。并在超声心动图左心室检测中提出利用检测额外标记点(二尖瓣环、心内膜垫和心尖),能高效地对左心室朝向姿态进行估计。为了验证算法的鲁棒性和有效性,实验数据选取经食管超声心动图和核磁共振图像。实验结果表明算法是快速、精确和有效的。
陶攀付忠良付忠良朱锴
关键词:计算机辅助检测核磁共振图像超声心动图
封面图片说明
2017年
2017年第11期封面图片来自论文“空间金字塔分解的深度可视化方法”,通过评估模型特征空间的潜在可表示性提出的一种用于改善理解模型特征空间的可视化方法.图片显示选取的深度模型来自于开源Caffe社区的经典深度卷积神经网络模型,其在ImageNet数据集上的分类识别性能依次从低到高,模型的复杂程度依次递增.为比较不同深度模型学习相同类别特征图的差异。
陶攀付忠良朱锴
关键词:卷积神经网络金字塔分解可视化
空间金字塔分解的深度可视化方法被引量:2
2017年
针对基于深度卷积神经网络的图像分类模型的可解释性问题,通过评估模型特征空间的潜在可表示性,提出一种用于改善理解模型特征空间的可视化方法.给定任何已训练的深度卷积网络模型,所提出的方法在依据原输入图像使得模型类别得分激活最大化时,首先对反向传播的梯度进行归一化操作,然后采用带动量的随机梯度上升训练策略,反向回传修改原输入图像.引入了通过激活最大化获得的图像可解释性的正则化方法,常规正则化技术不能主动调整模型特征空间的潜在可表示性,结合现有正则化方法提出空间金字塔分解方法,利用构建多层拉普拉斯金字塔主动提升目标图像特征空间的低频分量,结合多层高斯金字塔调整其特征空间的高频分量得到较优可视化效果.通过限制可视化区域,提出利用类别显著性激活图技术加以压制上下文无关信息,可进一步改善可视化效果.对模型学习到的不同类别和卷积层中单独的神经元进行合成可视化实验,实验结果表明提出的方法在不同的深度模型和不同的可视化任务中均能取得较优的可视化效果.
陶攀付忠良付忠良王莉莉
关键词:金字塔分解卷积神经网络
基于主动学习不平衡多分类AdaBoost算法的心脏病分类被引量:11
2017年
针对不平衡分类中小类样本识别率低问题,提出一种基于主动学习不平衡多分类Ada Boost改进算法。首先,利用主动学习方法通过多次迭代抽样,选取少量的、对分类器最有价值的样本作为训练集;然后,基于不确定性动态间隔的样本选择策略,降低训练集的不平衡性;最后,利用代价敏感方法对多分类Ada Boost算法进行改进,对不同的类别给予不同的错分代价,调整样本权重更新速度,强迫弱分类器"关注"小类样本。在临床经胸超声心动图(TTE)测量数据集上的实验分析表明:与多分类支持向量机(SVM)相比,心脏病总体识别率提升了5.9%,G-mean指标提升了18.2%,瓣膜病(VHD)识别率提升了0.8%,感染性心内膜炎(IE)(小类)识别率提升了12.7%,冠心病(CAD)(小类)识别率提升了79.73%;与SMOTE-Boost相比,总体识别率提升了6.11%,G-mean指标提升了0.64%,VHD识别率提升了11.07%,先心病(CHD)识别率提升了3.69%。在TTE数据集和4个UCI数据集上的实验结果表明,该算法在不平稳多分类时能有效提高小类样本识别率,并且保证其他类别识别率不会大幅度降低,综合提升分类器性能。
王莉莉付忠良陶攀胡鑫
关键词:BOOST多类别分类
基于深度学习的超声心动图切面识别方法被引量:6
2017年
提出了一种基于深度卷积神经网络自动识别超声心动图标准切面的方法,并可视化分析了深度模型的有效性。针对网络全连接层占有模型大部分参数的缺点,引入空间金字塔均值池层化替代全连接层,获得更多空间结构信息,并大大减少模型参数、降低过拟合风险,通过类别显著性区域将类似注意力机制引入模型可视化过程。通过超声心动图标准切面的识别问题案例,对深度卷积神经网络模型的鲁棒性和有效性进行解释。在超声心动图上的可视化分析实验表明,改进深度模型作出的识别决策依据,同医师辨别分类超声心动图标准切面的依据一致,表明所提方法的有效性和实用性。
陶攀付忠良朱锴王莉莉
关键词:超声心动图可视化卷积神经网络
共2页<12>
聚类工具0