卢鹏
- 作品数:25 被引量:122H指数:7
- 供职机构:上海海洋大学信息学院更多>>
- 发文基金:国家自然科学基金上海市地方高校能力建设项目上海市科学技术委员会资助项目更多>>
- 相关领域:自动化与计算机技术天文地球理学机械工程更多>>
- 基于多尺度卷积特征融合的台风等级分类模型被引量:8
- 2019年
- 为提高卷积神经网络对图像多尺度变化的感知能力,增加网络的尺度不变性,提出一种基于多尺度卷积特征融合的台风等级分类模型。在卷积神经网络中添加多尺度感知层,对卷积特征进行多尺度感知并进行级联。将多尺度正则化项添加到损失函数中,通过反向传播来最小化隐含层权重的残差,优化模型的特征提取能力。最后将多尺度高层语义特征通过Softmax分类层归一化成各图像类别的概率值,取最大概率值为最后图像的分类结果。为有效验证本模型的多尺度感知能力,选用红外卫星台风云图作为数据集,实验结果表明,本模型能有效感知并提取台风云图的局部特征,并在两个通用数据集MNIST和CIFAR-10上验证了本模型的泛化能力。
- 卢鹏邹佩岐邹国良
- 关键词:大气光学多尺度特征
- 基于双重注意力机制的CycleGAN海岸线自动提取方法被引量:1
- 2022年
- 将遥感图像进行像素级海陆分割是海岸线提取的一项基础性工作。由于海岸线的动态变化,获取精准的海岸线标记数据集比较困难,为此采用Google Aerial photo-Maps配对样本,在对Google Maps进行海陆二值化处理后构建了新的配对数据集。针对新数据集样本较少问题,在循环生成对抗网络(CycleGAN)模型的基础上,提出了基于双重注意力机制的DAM-CycleGAN。新模型全面考虑遥感图像和海陆二值化图像之间的结构相似性,改进了循环一致性损失,并设计通道注意力模块和空间注意力模块来凸显显著性特征和区域,以增强模型在小样本训练下的特征学习能力。在均方误差、平均像素精度和平均交并比(MIoU)三个评价指标上,与全卷积神经网络模型、DeepLab模型在多个规模数据集训练下的实验结果对比,改进模型转换的海陆二值化图像与真值图像更加吻合,MIoU值分别至少提高7%、6%以上,验证了所提方法的有效性和可行性。
- 卢鹏张娜邹国良王振华郑宗生
- 关键词:图像处理遥感小样本
- 基于深度神经网络的台风中心定位方法
- 2024年
- 台风中心定位的微小误差会对台风路径预报造成较大的偏离,因此精确定位台风中心是台风路径预测和灾害预报的重要步骤。台风云系随时间不断变化且风力强弱不一,在卫星云图中呈现了多样性和复杂性,现有基于神经网络的模型由于缺少对台风特征图像多维度参数的权重合理分配,在自动提取台风图像特征上受到了限制。为此,提出一种融合通道注意力与坐标注意力的神经网络模型(TY-LOCNet),首先搭建深度卷积神经网络模型提取台风特征;其次引入通道注意力机制从台风特征中捕获通道级别的信息,提升模型对重要通道的关注度;然后将通道注意力结果输入到坐标注意力机制中全局标定台风位置信息,使模型能够在较大的区域关注到台风的形态结构;此外,均方误差损失函数未能融合计算坐标导致定位精度低,因此提出距离损失函数(DISTLoss)通过距离回归提高模型定位精度。实验结果表明,TY-LOCNet的平均位置误差(MLE)、平均定位误差(MAE)和检测速度分别为3.502像素,0.292°和17 FPS,优于其他模型。台风中心定位模型TY-LOCNet可为台风预报提供实时性台风中心定位支持。
- 郑宗生沈绪坤王振华卢鹏
- 关键词:神经网络
- 融合多重分解和差值修正的海浪波高预测研究
- 2024年
- 为了提升海浪波高预测精度,提出了融合多重分解和差值修正的海浪波高预测模型(J-DE-LSTM)。该模型采用自适应噪声完备集合经验模态分解,对波高数据进行一重分解,以及对分解后的残差分量进行二重分解;采用亲和力传播算法进行聚类降维并输人到长短期记忆网络进行预测获取初步预测值。建立波高观测值与初步预测值形成的差值序列进行三重分解,采用样本熵重构为趋势项和周期项并进行权重计算,构建粒子群算法优化极限学习机和LSTM的组合预测模型进行双轨并行预测;最后将预测结果与权重加权融合进行差值修正未来点位波高预测值。实验结果表明J-DE-LSTM模型较LSTM、TCN模型平均绝对误差提升约4.1%~11.5%,均方误差提升6.5%~15.2%。
- 卢鹏姜星竹王振华郑宗生
- 关键词:加权融合
- 无监督图像翻译的个性化手写汉字生成方法被引量:2
- 2022年
- 由于汉字拥有大量的字符,大多数对汉字的研究主要集中在汉字的识别和分类问题上,对于生成汉字的研究较少,尤其是在没有大量配对的汉字数据集的情况下。该模型使用内容和风格样式都不匹配的汉字数据集,将生成个性化手写汉字的过程公式化为一个从现有的标准印刷字体到个性化手写汉字样式映射的问题。在基于无监督学习的图像翻译模型的基础上,利用注意力机制和自适应标准化层来增强个性化汉字生成的内容和风格,并且通过改进损失函数提高了判别器网络的判别能力。在CASIA-HWDB手写汉字数据集和兰亭序书法数据集上进行了实验,通过对比内容准确性和风格差异性的评价指标,验证了该方法的有效性。
- 卢鹏陈金宇邹国良万莹郑宗生王振华
- 关键词:无监督学习
- 基于YOLO v8和CycleGAN的红掌植株表型参数自动提取方法
- 2024年
- 植株表型参数是描述植物形态、结构和生理特征的定量化指标,可揭示植物生长规律,以及与环境因素之间的关系。现有的人工测量和激光雷达点云植株表型参数提取方法存在数据误差大、易损伤植株、成本高和数据量大等问题。为此,本文提出了一种基于YOLO v8和CycleGAN的红掌植株表型参数自动提取方法,利用双重注意力机制CBAM改进YOLO v8,提高模型特征提取能力,对红掌植株叶片进行检测与分割;通过Grabcut算法去除分割后图像背景区域特征,并利用VGG模型对其进行分类,分出完整型红掌植株叶片和缺失型红掌植株叶片;在CycleGAN的生成器中引入双重注意力机制和特征金字塔,提高模型多尺度特征的提取能力,引入SmoohL1损失函数,提升模型稳定性,对缺失型红掌植株叶片进行修复;提出一种表型参数提取算法(Phenotypic parameters extraction algorithms,PPEA),实现对红掌植株叶长、叶宽和叶面积的自动提取。以650幅自建数据集为例,对上述方法进行了比较与分析,实验结果证明,本文方法在红掌植株表型参数自动提取方面具有良好的效果。
- 卢鹏孙天文陈明王振华郑宗生
- 关键词:红掌图像修复
- 基于AlexNet的近岸水生植物光谱分类及特征光谱分析被引量:8
- 2023年
- 水生植物能够净化污染物和抑制藻类生长,在生态系统重建方面具有重要的应用价值。光谱分析作为植物种类识别的一种方法,具有无接触、快速、无污染等特点。受周围水环境的影响,绿色水生植物的光谱特征峰比陆生植物更加难以区分,地面实测光谱数据不仅维度高,且存在大量重叠谱带和背景干扰,特征光谱不明显;同时,通过地面实测获取样本数据较为困难,适用于深度学习的地面光谱数据集较少。针对以上问题,本文提出了一种基于一阶导数法结合AlexNet网络的分类模型。本团队以2019年9—10月上海河道内4种优势种群的近岸挺水水生植物为研究对象,使用地物光谱仪采集4种水生植物叶片部位的光谱信息。实验中,首先使用4种光谱分析法对原始数据进行预处理,比较预处理前后分类模型的准确率,其中一阶导数法结合AlexNet网络的分类模型对4种水生植物的分类精度最高,为99.50%;然后分别选取样本数据的40%、60%和80%作为训练集,验证模型在小样本下的泛化能力;最后利用Grad-CAM算法对模型进行可视化,分析后发现本文模型提取的水生植物的特征光谱与现有研究结果一致。上述研究结果表明,本文模型能够有效提取水生植物的特征光谱,实现对4种水生植物的快速准确分类识别,为高光谱遥感卫星识别此4种水生植物提供了重要参考。
- 郑宗生刘贝卢鹏王振华邹国良赵家惠李云飞
- 关键词:光谱学光谱预处理
- 基于改进SIFT的时间序列图像拼接方法研究被引量:27
- 2020年
- 针对SIFT(Scale Invariant Feature Transform)算法计算复杂度高,运行时间长的问题,提出了一种改进的SIFT算法。通过扩大极值点取值范围,减少极值点数量,提高运算速度;采用12环的圆形窗口代替传统的方形窗口,简化了特征描述符的构造方法,生成78维SIFT特征描述符,进一步提高了算法的运算速度;将BBF(Best Bin First)运用到特征点对之间初次配准的搜索中,并用RANSAC(Random Sample Consensus)算法对特征点配准对进行二次处理,以消除错误配准。将改进的SIFT算法与渐入渐出融合算法相结合,实现对时间序列图像的拼接融合处理。针对拼接融合后的图像,采用局部分块检测的方法评价其效果。实验结果表明,该算法运算速度快,具有较高的鲁棒性,且拼接融合效果好。
- 卢鹏卢奇邹国良王振华侯倩
- 关键词:尺度不变特征变换随机抽样一致性图像拼接
- 基于Seq2Seq和Attention的时序卫星云图台风等级预测被引量:6
- 2020年
- 台风预测可为台风预警预报提供先验信息,辅助相关部门进行科学决策,以减少灾害损失。利用时间序列台风卫星云图,提出一种新的台风等级预测模型SeqTyphoon,将注意力机制和序列到序列引入模型预测未来时刻台风图像,然后利用卷积神经网络对预测的台风图像进行台风等级预测。通过日本气象厅发布的1981—2017年3万多张时序台风卫星云图,构建了训练集、验证集和测试集,分别对应29519、3804、1995张台风图像。针对SeqTyphoon模型,分别进行了台风云图的不同时间间隔、不同预测时长及不同空间分辨率对台风图像预测精度影响的对比实验。实验结果表明,台风云图均为32像素×32像素,时间间隔为6 h比时间间隔为12 h的训练集和验证集的均方根误差分别降低5.41%、5.72%,前者训练集的均方根误差达到0.0922,验证集为0.0954,前者台风等级预测准确率为后者的2倍;台风云图为32像素×32像素,时间间隔为6 h时,预测未来6~48 h的台风图像,训练集和验证集的均方根误差均递增,台风等级预测准确率递减;时间间隔为6 h,图像为64像素×64像素的训练集的均方根误差为0.0896,验证集为0.0911,台风等级预测总体准确率为83.2%。综上,影响台风图像的最主要因素是相邻台风云图的时间间隔,其次是预测时长与空间分辨率大小。
- 郑宗生刘敏胡晨雨傅泽平卢鹏姜晓轶
- 关键词:时间序列
- 改进Shufflenetv2_YOLOv5的轻量级SAR图像舰船目标实时检测被引量:4
- 2023年
- 针对当前SAR图像舰船目标检测实时性不高、准确率较低等问题,提出了一种改进Shufflenetv2_YOLOv5的轻量级目标检测模型。首先对YOLOv5网络的主干网络进行改进,在对比了MobileNetv2、Shufflenetv2两种轻量级网络的效果之后,构建了Shufflenetv2_YOLOv5网络。引入Transformer结构和双重注意力机制模块对Shufflenetv2_YOLOv5网络进行改进,以增强舰船目标的特征表达。使用FReLU替换原YOLOv5的激活函数,进一步提高网络的性能。同时,提出一种新的损失函数,增强舰船目标的定位效果。实验结果表明,本文算法在SSDD数据集上的准确率为80.2%,FPS为193帧/s,在保证精度的情况下,实现了SAR图像舰船目标实时检测。
- 卢鹏曹阳邹国良王振华郑宗生
- 关键词:合成孔径雷达