目的:探讨基于CT图像的影像组学诺模图术前预测胃癌Lauren分型的可行性。方法:回顾性分析经病理检查确认的539例胃癌患者的临床资料,按照7∶3的比例随机分为训练集和验证集,利用ITK-SNAP软件对门脉期CT图像进行勾画,从瘤内及瘤周提取两组影像组学特征。利用最小绝对收缩和选择算子(least absolute shrinkage and selection operator,LASSO)回归筛选出最优特征组合,分别构建了基于瘤内的模型、基于瘤周的模型及联合瘤内及瘤周特征的影像组学标签,基于临床特征构建了临床模型1和临床模型2,最后结合临床特征和影像组学标签构建了影像组学模型。利用受试者工作特征(receiver operator characteristic,ROC)曲线下面积(area under curve,AUC)评估模型的预测能力。采用Delong检验比较各个模型间的预测性能。采用校准曲线验证模型预测概率与实际病理结果的匹配性,决策曲线评估临床信息的有效性。结果:影像组学标签在训练集与验证集的AUC分别为0.715(95%CI:0.663~0.767),0.714(95%CI:0.636~0.792)。结合了临床特征及影像组学标签的影像组学模型性能优于其他模型,在训练集与验证集的AUC分别为0.745(95%CI:0.696~0.795),0.758(95%CI:0.685~0.831)。此外,校准曲线和决策曲线证明了影像组学诺模图具有良好的匹配性以及临床实用性。结论:结合了影像组学标签及临床特征的影像组学模型有助于区分Lauren分型中的弥漫型及肠型胃癌,为合理制定临床治疗策略提供了依据。