樊程程
- 作品数:2 被引量:35H指数:2
- 供职机构:辽宁工程技术大学安全科学与工程学院更多>>
- 发文基金:辽宁省高等学校杰出青年学者成长计划国家自然科学基金更多>>
- 相关领域:环境科学与工程矿业工程更多>>
- 粗糙集-改进神经网络落煤瓦斯涌出量预测被引量:7
- 2014年
- 为对井下落煤瓦斯涌出量进行预测,采用粗糙集与改进神经网络相结合的方法,在样本数据的筛选上吸取粗糙集数据约简的优点,使选择的数据样本简洁且更具代表性;充分利用BP神经网络的非线性拟合能力,将遗传算法与其相结合,避免BP网络陷入局部最优.利用编写的程序确定隐含层节点数,相比以往经验公式取值更具优势.最后在任家庄煤矿成功应用.研究结果表明:利用粗糙集与改进神经网络相结合模型进行预测,结果准确可靠,克服了以往BP模型的不足.该模型对井下落煤瓦斯涌出量预测具有一定参考价值.
- 董晓雷贾进章樊程程赫祥林
- 关键词:粗糙集数据约简涌出量
- 基于SVM耦合遗传算法的回采工作面瓦斯涌出量预测被引量:28
- 2016年
- 为了对回采工作面瓦斯涌出量进行预测,提出将支持向量机(SVM)与遗传算法(GA)相耦合。利用GA寻找SVM最优的惩罚参数c和核函数参数g,并结合SVM训练速度快且具有良好泛化性能的特点,建立了基于SVM耦合遗传算法的回采工作面瓦斯涌出量预测模型。煤层深度、煤层厚度、煤层倾角、开采层原始瓦斯量、煤层间距、采高、临近层瓦斯含量、临近层厚度、层间岩性、工作面长度、推进速度、采出率、日产量对瓦斯涌出量的影响是复杂的、非线性的,因而将其作为预测的影响参数。将瓦斯涌出量作为目标参数。分别将影响参数和目标参数作为GA-SVM的输入值和输出值进行训练,训练后的预测输出和期望输出之间的误差绝对值作为GA的适应度函数值进行参数优化。结果表明,该预测模型预测的最大相对误差为5.878 2%,最小相对误差为0.923 0%,平均相对误差为2.180 9%,相比耦合前及其他预测模型有更强的泛化能力和更高的预测精度。
- 董晓雷贾进章白洋樊程程
- 关键词:瓦斯涌出量遗传算法适应度函数