陈竟
- 作品数:1 被引量:1H指数:1
- 供职机构:哈尔滨工业大学计算机科学与技术学院更多>>
- 发文基金:中国博士后科学基金国家自然科学基金更多>>
- 相关领域:自动化与计算机技术更多>>
- 拓展模板的视频跟踪技术被引量:1
- 2016年
- 在视觉目标跟踪(video tracking)过程中,当跟踪图像存在背景杂波、图像噪声(如图像遮挡、图像快速移动)时,算法往往不能取得很好的图像追踪效果.为解决该问题,在经典L1-tracker追踪算法的基础上,针对目标遮挡、目标消失等严重影响跟踪效果的情况进行研究,提出加入拓展模板(固定模板和近况模板)的策略来提高跟踪精度和抗遮挡能力.固定模板保持追踪目标最初的图像特征,防止错误的追踪结果在模板更新时引入错误的特征,进而导致识别目标偏移.近况模板记录目标的最新跟踪结果,避免由于点模板的大量使用而造成遮挡的误识别.通过对多个标准数据集的实验测试,证明加入新策略的L1-tracker算法,在不破坏原有L1-tracker优势的基础上,显著地提升了L1-tracker算法应对遮挡问题的能力.
- 张永强程丹松王君吴锐陈竟石大明