为了解决支持向量机(SVM)参数优化的问题,提出一种改进的基于社会力模型群智能优化算法SFSO(Swarm Optimization algorithm based on Social Force Model)的SVM参数优化方法。SFSO通过期望力和排斥力使算法在全局搜索和局部搜索中能够较好的平衡,利用SFSO特有的搜索机制对SVM的惩罚因子和径向基函数进行优化,提高SVM的分类性能。通过对几个benchmark函数和常用的UCI数据集进行测试表明:改进后的SFSO算法不仅对于求解函数优化问题具有较强的鲁棒性和较高的求解精度,而且经改进SFSO算法优化后的SVM具有更快的收敛速度和更高的分类准确率。