商亮
- 作品数:4 被引量:60H指数:4
- 供职机构:西北农林科技大学机械与电子工程学院更多>>
- 发文基金:国家自然科学基金中央高校基本科研业务费专项资金国家科技支撑计划更多>>
- 相关领域:农业科学理学轻工技术与工程更多>>
- 基于介电频谱的采后苹果可溶性固形物含量无损检测被引量:20
- 2013年
- 根据10-4 500 MHz间采后21周贮藏期间无损富士苹果介电参数的频谱特性,建立了苹果可溶性固形物含量的支持向量回归(SVR)预测模型和BP网络预测模型;并综合比较了采用原始频谱(FF)、主成分分析(PCA)和连续投影算法(SPA)优选频率对模型预测效果的影响。研究结果表明,PCA-SVR建模效果最好,其预测相关系数为0.883,均方根误差为0.552,PCA-BP的建模效果较PCA-SVR稍差。并且发现经SPA处理后的数据建立的模型,均方根误差普遍较小;经PCA处理后的数据建立的模型,预测相关系数普遍较高。
- 郭文川商亮王铭海朱新华
- 关键词:苹果可溶性固形物含量介电特性支持向量回归BP网络
- 基于介电频谱技术的甜瓜品种无损检测被引量:14
- 2017年
- 研究应用介电频谱技术实现对甜瓜的无损、快速及准确分类。以陕西杨凌某4家大棚外形相似的"红阎良"、"新早蜜"、"208"及"玛瑙"等4类成熟甜瓜为研究对象,采用矢量网络分析仪测量共246个样品在20 MHz^4 500 MHz的介电频谱。用Kennard-Stone方法划分校正集与验证集,分别建立支持向量机(support vector machine,SVM)和极限学习机(extremelearning machine,ELM)种类判别模型,并比较全频谱(full frequencies,FF)、连续投影算法(successive projectionalgorithm,SPA)和主成分分析(principal componentanalysis,PCA)等不同预处理方法对模型精度的影响。结果表明:1)所建6个判别模型验证集总正确率均大于96%,均可用于甜瓜种类的判别。2)对比3种预处理方法,FF完好地保留了样品的原始信息,2种判别模型的验证集总正确率都达到了100%,但由于存在干扰信息导致模型稳定性不好;PCA方法选择能代表原谱信息99.99%的前10个主成分信息用来建模,能有效简化模型,但验证集每个模型均有误判,两种判别模型总正确率分别为96.72%及98.36%;SPA从202个变量中提取17个特征变量参与建模,验证模型整体稳定性较其他两种好,总正确率分别达到96.72%和100%。3)综合考虑判别模型的验证集总正确率及模型稳定性,SPA-ELM模型判别效果最好,验证集总正确率达到100%,更适用于基于介电频谱的甜瓜种类判别。因此,基于甜瓜的介电频谱,通过支持向量机和极限学习机方法可以成功区分甜瓜种类,为甜瓜的无损检测及分类研究提供了一种新方法。
- 王转卫赵春江商亮孔繁荣翁小凤
- 关键词:介电特性甜瓜极限学习机
- 基于近红外漫反射光谱的多品种桃可溶性固形物的无损检测被引量:19
- 2014年
- 【目的】研究基于近红外漫反射光谱的多品种桃可溶性固形物含量的无损检测技术。【方法】在获得3个不同品种桃近红外漫反射光谱的基础上,采用多元散射校正(MSC)方法处理原始光谱,以SPXY算法划分样品集,分别建立了可溶性固形物含量的偏最小二乘回归(PLSR)、极限学习机(ELM)和最小二乘支持向量机(LSSVM)预测模型,并比较和评价了移动窗口偏最小二乘法(MWPLS)和连续投影算法(SPA)优选有效特征波长对于简化模型运算量、改善模型预测性能的影响。【结果】虽然全光谱可以获得较好的识别效果,但是模型比较复杂;MWPLS与SPA优选的有效特征波长均能有效地减少建模变量并简化模型,但MWPLS在提高建模效率和改善模型预测精度方面有更明显的优势;PLSR、ELM与LSSVM模型都取得了较理想的预测结果,其中PLSR方法较适用于全光谱建模分析;MWPLS-ELM模型对样品集中桃可溶性固形物含量的预测性能最好,其校正相关系数、校正均方根误差、预测相关系数和预测均方根误差分别为0.991,0.397,0.983和0.497。【结论】近红外漫反射技术可用于多品种桃可溶性固形物含量的准确、无损检测,也为其他品种果品的内部品质指标快速、无损检测提供了技术借鉴。
- 王铭海郭文川商亮谷静思
- 关键词:近红外光谱可溶性固形物无损检测
- 基于介电特性及ANN的油桃糖度无损检测方法被引量:23
- 2013年
- 为了探索利用果品的介电特性无损预测内部品质的可能性,该文采用矢量网络分析仪测量了10d贮藏期间,300个99-1油桃在20~4500MHz频率下的相对介电常数和介电损耗因子,以糖度作为内部品质指标,基于x-y共生距离的样本划分法确定了含243个样本的校正集和57个样本的预测集;建立了预测油桃糖度的偏最小二乘、支持向量机及极限学习机模型,并综合比较了采用全频谱以及利用无信息变量消除法和连续投影算法分别提取的特征变量作为各模型输入变量时,对各模型拟合效果的影响。结果表明:连续投影算法结合极限学习机预测效果最好(预测相关系数为0.887,预测均方根误差为0.782);与全频谱和无信息变量消除法相比,连续投影算法在简化模型及提高模型稳定性方面性能良好。该研究结果表明,基于油桃介电特性无损检测糖度是可行的,可为应用介电特性无损检测果品的内部品质指标提供了一种新方法。
- 商亮谷静思郭文川
- 关键词:介电特性油桃可溶性固形物含量极限学习机