[Objective] The aim was to promote nutrient cycling and utilization in the mountain's system combining fruits and poultry and to control non-point source pollution produced from swine raising and navel orange planting in headwaters of Dongjiang River. [Method] The quantitative analysis was mainly conducted for the so called "raising by planting" which is about material cycle in "pig-methane-fruit-fish" model and energy cascade utilization, based on relationship between excreted amount by livestock and the utilized quantity in Xinlin Farm in Longtang Town, Dingnan County, Jiangxi Province. [Result] Considering N requirement by fruit trees, a navel orange orchard (1 mu) could support about 2.72 pigs, the equipped biogas pool (1.88 m3) could support 1 166.67 kg of duckweeds and a fish pond could support 25.57 grass carps. In contrast, a satsuma orchard (1 mu) could support about 1.96 pigs, the equipped biogas pool (1.35 m3) could support 841.53 kg duckweeds and the fish pond could support 18.44 grass carps. [Conclusion] The results provided scientific references for quantitative allocation of members in "pig-methane-fruit-fish" model when popularized in headwaters of Dongjiang River.
Objective The aim was to explore callus induction and plant regeneration of perennial ryegrass, as well as provide the foundation for transgenic research on perennial ryegrass.[ Methed] Mature seeds of perennial ryegrass were used as explants to study the effects of different hormone compositions on callus induction, proliferation and plant differentiation. Result The result showed that the induction rate achieved its highest on 2,4-D of 8 mg/L combining with 6-BA of 0.025 mg/L, which was up to 56.42%. Callus were differentiated after two to three generations, the highest differentiation rate 34.14% was achieved in the medium contained MS medium with 6-BA of 2 mg/L, and the differentiation rate was obviously affected by the callus condition after proliferation. The root inducing medium, containing 0.5 mg/L NAA and MS medium with half of macroelement, gained 98% root inducing rate. Conclusien A high frequency genetic regeneration system was established.