以QuickBird高分辨率遥感影像为主要数据源,采用多尺度影像分割方法提取地物对象的光谱、纹理和形状特征;在此基础上,构建基于随机森林(RF)方法的遥感影像分类模型,分析和评价特征变量对模型重要性与稳定性的影响。结果表明:1研究区最优分割尺度参数为70、形状因子0.2、色彩因子0.8,同时构建研究区乔木、灌木和草地等8个景观类型的光谱、纹理和形状等32个特征变量信息;2选择5 000棵树和1个节点变量构建的RF分类模型的总体精度为0.94,Kappa系数为0.93,OOB(Out of Bag)数据泛化误差为6.01%;3通过分析特征变量的重要性发现,Ratio_la_1和Ratio_la_2等光谱特征的重要性值明显比形状特征和纹理特征的高;4基于平均下降精度,选择16个变量构建RF模型时总体精度达到0.94,Kappa系数0.93;5基于基尼指数构建的RF模型,在19个变量时总体精度和Kappa系数达到峰值。相比较而言,基于平均下降精度构建的RF较稳定。