您的位置: 专家智库 > >

王亚辉

作品数:4 被引量:6H指数:2
供职机构:武汉大学计算机学院更多>>
发文基金:国家自然科学基金国家重点基础研究发展计划国家密码发展基金更多>>
相关领域:自动化与计算机技术天文地球更多>>

文献类型

  • 3篇期刊文章
  • 1篇会议论文

领域

  • 3篇自动化与计算...
  • 1篇天文地球

主题

  • 4篇量子
  • 4篇量子算法
  • 3篇信息安全
  • 3篇密码
  • 3篇RSA密码
  • 2篇量子计算
  • 2篇密码学
  • 1篇代换
  • 1篇整数
  • 1篇整数分解
  • 1篇资源消耗
  • 1篇相位
  • 1篇相位估计
  • 1篇密码体制
  • 1篇变量代换
  • 1篇RSA密码体...
  • 1篇成功率

机构

  • 4篇武汉大学
  • 1篇河北大学
  • 1篇教育部
  • 1篇信阳师范学院

作者

  • 4篇王亚辉
  • 2篇颜松远
  • 2篇张焕国
  • 1篇吴万青
  • 1篇王后珍
  • 1篇韩海清

传媒

  • 1篇计算机学报
  • 1篇计算机科学
  • 1篇工程科学与技...
  • 1篇2015全国...

年份

  • 1篇2018
  • 1篇2017
  • 1篇2016
  • 1篇2015
4 条 记 录,以下是 1-4
排序方式:
一种新的攻击RSA的量子算法被引量:3
2016年
整数分解是数论中一个非常古老的难解性问题,而对于当今世界上最有名且广泛使用的RSA公钥密码体制,其安全性是基于整数分解的难解性的。迄今为止,最有希望破解RSA的方法就是Shor的量子算法。利用RSA不动点性质,基于量子Fourier变换和变量代换,提出了一种新的攻击RSA的量子算法。该算法不需要分解n,而是从RSA密文C中直接恢复其明文M。该算法与Shor算法相比,需要的量子位更少,且成功概率大于1/2。最后将新算法的资源消耗情况与Shor算法的进行了对比。
王亚辉颜松远
关键词:RSA密码量子算法信息安全
基于方程求解与相位估计攻击RSA的量子算法被引量:3
2017年
量子计算的发展对现有的公钥密码体制提出了严峻的挑战,利用Shor算法就可攻击公钥密码RSA,ELGamal等.因此,研究量子计算环境下的密码破译有重大意义.经典的因子分解算法是通过求解同余方程α~2≡β~2(modn)实现的.据查证,目前还没有求解此方程的量子算法,故我们试图从量子计算的角度提出解决此同余方程的量子算法.该算法是对经典求解同余方程α~2≡β~2(modn)的量子化实现.相比于Shor算法,算法1所需量子位少,具有亚指数时间复杂度,且成功概率接近于1.为了降低时间复杂度,我们从非因子分解角度出发,基于量子Fourier逆变换和相位估计,给出了算法.同Shor算法相比,算法2不需要分解n,而从RSA密文C直接恢复出明文M,具有多项式时间复杂度,且成功概率高于Shor算法攻击RSA的成功概率,同时不必要满足密文的阶为偶数.
王亚辉张焕国张焕国吴万青
关键词:信息安全密码学RSA密码体制量子计算
一种新的攻击RSA的量子算法
整数分解是数论中的一个非常古老的难解性问题,而当今世界上最有名且广泛使用的RSA公钥密码体制,其安全性是基于整数分解的难解性.迄今为止,最有希望破解RSA的方法就是Shor的量子算法.本文利用RSA不动点性质,基于量子F...
王亚辉颜松远
关键词:整数分解量子算法变量代换资源消耗成功率
文献传递
基于e次根攻击RSA的量子算法被引量:1
2018年
量子算法的出现给现有的公钥密码体制带来了严峻挑战,其中,最具威胁的是Shor算法。Shor算法能够在多项式时间内求解整数分解问题和离散对数问题,使得当前应用广泛的RSA、ElGamal和ECC等公钥密码体制在量子计算环境下不再安全,因此研究量子计算环境下的密码破译就有重大意义。解决整数分解问题是Shor算法攻击RSA的核心思想,但攻破RSA并非一定要从解决整数分解问题入手。作者试图从非整数分解角度出发,设计攻破RSA密码体制的量子算法。针对RSA公钥密码体制的特点,通过量子傅里叶变换求出RSA密文C模n的e次根进而得到RSA的明文M。即不通过整数分解问题攻破了RSA。与以往密码分析者通过分解模数n试图恢复私钥的做法不同,直接从恢复明文消息入手,给出一个对抗RSA密码体制的唯密文攻击算法。研究表明,本文算法的成功概率高于利用Shor算法攻击RSA的成功概率。同时本文算法具有如下性质,即不通过解决整数分解问题实现攻破RSA,且避开了密文C模n的阶为偶数这一限制。
王亚辉王亚辉张焕国
关键词:信息安全密码学RSA密码量子计算
共1页<1>
聚类工具0