吴亭亭
- 作品数:4 被引量:29H指数:3
- 供职机构:中国科学院成都生物研究所更多>>
- 发文基金:国家自然科学基金四川省应用基础研究计划项目更多>>
- 相关领域:环境科学与工程电气工程更多>>
- 三维电极微生物燃料电池处理生活污水同步产电性能被引量:6
- 2018年
- 为促进微生物燃料电池(MFC)推广应用于实际,构建以填充碳毡构成的三维结构为电极的单室微生物燃料电池,用于处理生活污水同步产电.对比分析序批运行和连续运行方式对生活污水的处理效果以及MFC的产电性能.在序批实验中,5 d内化学需氧量(COD)、氨氮(NH4^+-N)去除率分别达到91.1%和98.2%,处理结果符合城镇污水处理厂污染物排放标准(GB18918-2002)一级A标准;当MFC外接51Ω电阻时最大功率密度为27.88 mW/m^3.在连续实验中,污水以稳定流速(0.2 mL/min)自反应器底部注入,形成上流式连续运行模式,其水力停留时间(HRT)为5 d,此时出水中COD保持稳定,去除率变化范围为83.2%-97.4%,NH4^+-N浓度逐渐降低保持在9.45 mg/L以下,反应器对污水中NH4^+-N的去除效果较好,自第11天后出水中有NO3^--N积累,导致总氮去除率较低.连续运行方式下MFC最大功率密度为582.5 mW/m^3,约是序批方式的21倍;平稳期平均输出电压为0.087 7 V,是序批运行时的2.9倍.结果表明在连续运行方式下,由于有机物得到补充,微生物可不断利用有机物用于产电,所以连续运行方式时MFC的产电性能更好,可以改善序批方式下输出电压较低的现象.最后基于16S rRNA高通量测序分析电极上微生物群落,发现主导微生物属于Thauera sp.、Saprospiraceae-UN sp.、OPB56-UN sp.,Thauera sp.是一类能以电极为电子供体而还原NO3--N的脱氮微生物.因此可通过富集此类脱氮菌来降低连续运行方式下出水NO3--N浓度,这为改善污水处理效果提供了一种新方法.
- 蒋沁芮李泽华杨暖吴亭亭吴亭亭
- 关键词:微生物燃料电池三维电极生活污水COD产电
- 生物电化学脱氮技术研究进展被引量:15
- 2018年
- 生物电化学系统(BES)因兼有污染物去除与能量回收等优点,近年来已成为环境污染治理领域的关注热点. 对生物电化学技术在脱氮方面的基本原理、含氮污染物的转化途径进行综述,主要的生物脱氮过程包括阴极反硝化、阳极氨氧化以及阴极同步硝化反硝化等,而非生物脱氮过程包括NH3/NH4^+的跨膜转移、氨气逃逸等. 总结已报道的BES中主要脱氮微生物及其脱氮机制,BES中多数反硝化菌属于变形菌门(Proteobacteria);硝化细菌主要是亚硝化菌属(Nitrosomonas)和硝化杆菌属(Nitrobacter);在同步硝化反硝化过程中,电极上的硝化、反硝化菌有明显的分层现象. 最后阐述了生物电化学脱氮技术在生活污水、渗滤液、地下水处理等领域的最新应用研究,通过改变反应器构型以及运行模式等条件构建不同BES处理各类污水,以达到去除污染物同时回收电能或资源的目的. 基于目前BES的优势,认为减少脱氮中间产物(NO2^- -N、N2O)的积累及扩大BES规模对电能输出和污染物去除效果的影响将是未来的研究方向. (图3 表2 参66)
- 蒋沁芮杨暖吴亭亭吴亭亭
- 关键词:生物电化学氨氧化反硝化菌硝化菌
- 生活污水有机负荷率对连续流单室无膜微生物电解池性能的影响被引量:6
- 2017年
- 连续流微生物电解池能有效应用于污水处理中,为了解不同有机负荷率(OLR)对单室微生物电解池(MEC)性能的影响,采用连续流方式,以生活污水为基质,研究恒定外加电压0.6 V、不同OLR(810、920、1 080、1 484、1 680、2 531、2 780 mg L^(-1) d^(-1))情形下化学需氧量(COD)去除率、甲烷(CH4)产率及能耗等.结果表明,随着OLR增加,COD去除率和能量消耗呈降低趋势,而CH4产率呈增加趋势.实验初期,外加电压为0.6 V,进水COD浓度为200 mg/L,MEC对COD去除率达到70%,而厌氧消化(AD)只能达到41%,此时MEC中CH4含量为8.39%,而AD只有6.44%.实验过程中,外加电压为0.6 V,OLR为2 780 mg L^(-1) d^(-1)时,CH4产率达到了(126.72±0.30)m L L^(-1) d^(-1),而能量消耗为(0.032 0±0.0052)k W h/kg COD.菌群高通量分析结果显示,MEC阳极碳毡的优势菌群为Methanothrix sp.和Geobacter sp.,其丰度分别为39.05%和21.83%,而AD组相应丰度只占2.00%和11.76%.综上,MEC可以在低能耗下有效处理低浓度生活污水并同步产CH4,这为生活污水处理提供了新的思路.
- 刘建高平张艳艳吴亭亭李大平
- 关键词:有机负荷率生活污水甲烷能耗
- 单室微生物电解池处理黄水产甲烷被引量:3
- 2017年
- 为进一步挖掘酿酒副产物黄水的资源化利用空间,构建不锈钢单室微生物电解池(MEC)处理黄水并实现能源回收.以4%的黄水为基质,考察不同外加电压(0.4V、0.6V、0.8V、1.0V)对黄水处理过程中化学需氧量(COD)去除、各有机酸降解、甲烷产生及能量平衡等的影响.结果表明,当外加0.8V电压时,MEC中COD去除率达到94.90%±0.70%,较对照组(AD)的82.00%±0.70%增加了12.90%±0.74%.同时,COD去除负荷达(5.27±0.51)kgm^(-3)d^(-1),是AD(3.45±0.09)kgm^(-3)d^(-1)的1.53倍.对反应中甲烷产生速率和有机酸组分变化分析表明,当外加0.6V电压时,MEC中的甲烷产生速率为(1818.54±145.77)mLL^(-1)d^(-1),比AD(1014.88±121.44)mLL^(-1)d^(-1)增加了78.19%;当外加电压为0.8V时,MEC中的乙醇去除速率为(102.37±14.65)mgL^(-1)h^(-1),是AD组(57.31±10.45)mgL^(-1)h^(-1)的1.79倍;AD组的最高丙酸浓度高达(1436.10±84.42)mg/L,而外加1.0V电压的MEC组,其最高丙酸浓度为(845.57±76.72)mg/L,较之降低了(590.53±7.73)mg/L.当反应周期结束时,AD中残留的乙酸和丙酸浓度分别是MEC(外加0.8V电压)中的93.57和5.31倍.最后,反应器能量平衡分析的结果表明,当外加电压为1.0V时,其能量产生与净能量产生分别达到了(3.93±0.48)kWhkg^(-1)、(3.80±0.48)kWhkg^(-1),较AD组(2.92±0.37)kWhkg^(-1)分别增加了(1.01±0.12)kWhkg^(-1)、(0.88±0.12)kWhkg^(-1),且MEC均获得了较AD组更多的净能量.综上表明该MEC可有效促进黄水处理效率并回收甲烷,其最佳外加电压为0.8V.
- 吴亭亭杨暖杨暖张艳艳刘建刘建
- 关键词:黄水COD产甲烷