In the humid oral environment,3Y-TZP ceramics always suffer from low-temperature degradation(LTD)for a long time,which results in the degradation of mechanical properties and catastrophic failure.The low-temperature degradation(LTD)and mechanical properties of low-cost tetravalent(Ge^(4+),Ti^(4+))element-doped 3Y-TZP were investigated by analysing grain boundary segregation in samples with deferent contents.The results show that GeO_(2) is superior to TiO_(2) in limiting LTD but results in lower flexural strength and fracture toughness when the content is≥1.5 mol%.This dilemma can be improved by adding only 0.1%-0.5 wt%Al_(2)O_(3),and the flexural strength and fracture toughness of 0.25 wt% Al_(2)O_(3) zirconia are then increased to 898 MPa and 4.68 MPa·m^(1/2) compared with 1Ge-3Y,respectively.This work is expected to provide an effective reference for the development and application of budget dental materials.
3Y-TZP/3wt%Al_(2)O_(3) powder was coated with varying amounts of BN using the urea and borate reaction sintering method,and then multiphase ceramics were prepared by hot pressing sintering.The micro-topography and the compositional analysis of synthesized ceramics were conducted through scanning electron microscopy,transmission electron microscopy and X-ray diffraction.A mechanical tester was used to analyze the Vickers hardness,fracture toughness,and bending strength of the synthesized ceramics.The results showed that the ceramic with a BN content of 12wt%showed the best processability,but had diminished mechanical properties(such as fracture toughness and bending strength).The ceramic with a BN content of 9wt%showed better processability than those with 3wt%and 6wt%BN.However,the fracture toughness was affected by the addition of 9wt%BN,making this ceramic only usable as a base material for a three-unit fixed bridge.In contrast,the ceramics with a BN content of 3wt%or 6wt%fulfilled the criteria for use in multi-unit restoration,but their low processability made them unsuitable for milling after sintering.
Lei ZhouYan-fang ZhangPan YiYing WenChao-fang DongLi-min MengSe-fei Yang