Nowadays,wireless local area network(WLAN)has become prevalent Internet access due to its low-cost gadgets,flexible coverage and hasslefree simple wireless installation.WLAN facilitates wireless Internet services to users with mobile devices like smart phones,tablets,and laptops through deployment of multiple access points(APs)in a network field.Every AP operates on a frequency band called channel.Popular wireless standard such as IEEE802.11n has a limited number of channels where frequency spectrum of adjacent channels overlaps partially with each other.In a crowded environment,users may experience poor Internet services due to channel collision i.e.,interference from surrounding APs that affects the performance of the WLAN system.Therefore,it becomes a challenge to maintain expected performance in a crowded environment.A mathematical model of throughput considering interferences from surrounding APs can play an important role to set up a WLAN system properly.While set up,assignment of channels considering interference can maximize network performance.In this paper,we investigate the signal propagation of APs under interference of partially overlapping channels for both bonded and non-bonded channels.Then,a throughput estimation model is proposed using difference of operating channels and received signal strength indicator(RSSI).Then,a channel assignment algorithm is introduced using proposed throughput estimation model.Finally,the efficiency of the proposal is verified by numerical experiments using simulator.The results show that the proposal selects the best channel combination of bonded and non-bonded channels that maximize the performance.
The IEEE802.11n standard has provided prominent features that greatly contribute to ubiquitous wireless networks.Over the last ten years,voice over IP(VoIP)has become widespread around the globe owing to its low-cost or even free call rate.The combination of these technologies(VoIP and wireless)has become desirable and inevitable for organizations.However,VoIP faces a bandwidth utilization issue when working with 802.11 wireless networks.The bandwidth utilization is inefficient on the grounds that(i)80 bytes of 802.11/RTP/UDP/IP header is appended to 10–730 bytes of VoIP payload and(ii)765μs waiting intervals follow each 802.11 VoIP frame.Without considering the quality requirements of a VoIP call,be including frame aggregation in the IEEE802.11n standard has been suggested as a solution for the bandwidth utilization issue.Consequently,several aggregation methods have been proposed to handle the quality requirements of VoIP calls when carried over anIEEE802.11n wireless network.In this survey,we analyze the existing aggregation methods of VoIP over the A-MSDU IEEE802.11n wireless standard.The survey provides researchers with a detailed analysis of the bandwidth utilization issue concerning the A-MSDU 802.11n standard,discussion of the main approaches of frame aggregation methods and existing aggregation methods,elaboration of the impact of frame aggregation methods onnetwork performance and VoIP call quality,and suggestion of new areas to be investigated in conjunction with frame aggregation.The survey contributes by offering guidelines to design an appropriate,reliable,and robust aggregation method of VoIP over 802.11n standard.
Mosleh M.AbualhajAbdelrahman H.HusseinManjur KolharMwaffaq Abu AlHija