This paper proposes a scheme for implementing the teleportation of an arbitrary unknown two-atom state by using a cluster state of four identical 2-level atoms as quantum channel in a thermal cavity. The two distinct advantages of the present scheme are: (i) The discrimination of 16 orthonormal cluster states in the standard teleportation protocol is transformed into the discrimination of single-atom states. Consequently, the discrimination difficulty of states is degraded. (ii) The scheme is insensitive to the cavity field state and the cavity decay for the thermal cavity is only virtually excited when atoms interact with it. Thus, the scheme is more feasible.
A symmetric and(n,n)-threshold scheme for a sender to partition his/her arbitrary single-qubit information among n recipients is proposed by using a newly constructed asymmetric(n+1)-qubit W state.Both the scheme in some given scenarios and the new W state are also discussed given.
The perfect teleportation of an arbitrary three-qubit state with the highly entangled six-qubit genuine state introduced by Borras et al.(J.Phys.A: Math.Theor.40 (2007) 13407) is studied.Some appropriate measuring bases the sender can take and the corresponding unitary operations the receiver should execute in terms of the sender’s measurement outcome are explicitly given.The flexibility between the measurement difficulty and the reconstruction difficulty is shown.Moreover,discussions and comparisons between our scheme and the recent incomplete scheme (Choudhury et al,J.Phys.A: Math.Theor.42 (2009) 115303) are made.
YIN XiaoFeng 1,LIU YiMin 2,ZHANG ZiYun 1,ZHANG Wen 1 & ZHANG ZhanJun 1 1 Key Laboratory of Optoelectronic Information Acquisition & Manipulation of Ministry of Education of China,School of Physics & Material Science,Anhui University,Hefei 230039,China