李铁成
- 作品数:16 被引量:84H指数:7
- 供职机构:东北农业大学更多>>
- 发文基金:国家自然科学基金中央级公益性科研院所基本科研业务费专项黑龙江省自然科学基金更多>>
- 相关领域:农业科学电气工程环境科学与工程更多>>
- 氮肥减施对节水灌溉稻田NH_(3)与N_(2)O排放及氮肥利用的影响被引量:7
- 2023年
- 为探究节水灌溉模式下黑土稻田NH_(3)、N_(2)O排放及氮肥吸收利用对减施氮肥的响应规律,以黑龙江省黑土稻田为研究对象,于2021年进行了大田试验,试验设置常规淹灌(F)和控制灌溉(C)2种灌溉模式,全生育期施氮量设置常规施氮水平(N,110 kg/hm^(2))、减氮10%(N1,99 kg/hm^(2))和减氮20%(N_(2),88 kg/hm^(2))3个水平,并在F和C灌溉模式下分别设置不施氮肥处理(CK1和CK2)作为对照组,共8个处理。分析了不同灌溉模式下减施氮肥对水稻全生育期NH_(3)挥发速率和N_(2)O排放的影响,计算了氮肥气态损失量和损失率,并基于同位素示踪技术进一步估算了水稻对氮肥的吸收利用量及水稻收获后土壤中的氮肥残留量。结果表明:2种灌溉模式下的氮肥气态损失量及损失率均随着施氮量的减少而降低。控制灌溉模式的应用增加了黑土稻田氮肥气态损失,其各处理的氮肥气态损失量及损失率均高于常规淹灌模式下相同施氮量处理。然而同位素示踪结果表明,采用控制灌溉模式能够增强水稻对氮肥的吸收,同时能够有效降低氮肥损失。控制灌溉模式下各处理水稻对氮肥的吸收利用量和利用率均显著高于常规淹灌模式下相同施氮量处理,且当施氮量相同时,控制灌溉模式下各处理的氮肥损失量和总损失率均显著低于常规淹灌模式(P<0.05)。综上所述,控制灌溉模式下减施氮肥提高了氮肥吸收利用率,同时降低了氮肥损失,并可稳产甚至能够在一定程度上增加水稻产量。研究结果可为东北地区稻田制定节肥、增效、减排兼容的水肥资源管理策略提供科学依据,对保障东北地区农业可持续发展具有重要意义。
- 李铁成李铁成张作合张忠学韩羽薛里
- 关键词:稻田节水灌溉同位素示踪技术
- 节水灌溉下生物炭与有机肥添加对黑土区稻田净碳排放的影响
- 2024年
- 为探寻节水灌溉条件下施入生物炭与有机肥对黑土区稻田净碳排放的影响,于2023年开展田间试验。试验设置常规淹灌(F)和控制灌溉(C)两种灌溉模式,同时在每种灌溉模式下设置生物炭还田(B)和有机肥还田(O)2种物料还田形式,以及无物料还田(N)作为对照组,共计6个处理。分析了两种灌溉模式下施入生物炭与有机肥对稻田土壤CH_(4)、CO_(2)、N_(2)O排放和水稻产量的影响,并结合土壤有机碳含量的变化,计算各处理的净温室气体排放量(NGHGE)。结果表明:在施入相同物料下,控制灌溉处理CH_(4)排放总量较常规灌溉减少71.06%~85.39%;CO_(2)、N_(2)O排放总量较常规灌溉分别增加41.89%~47.97%、27.56%~38.26%。与对照处理相比,生物炭施入使稻田N_(2)O、CH_(4)排放总量分别降低14.31%~23.90%、15.10%~23.83%,CO_(2)排放总量增加23.03%~26.63%;有机肥施入使稻田N_(2)O、CH_(4)、CO_(2)排放总量分别增加8.22%~12.09%、18.36%~19.22%、51.48%~53.48%。生物炭与有机肥施入均能增加土壤有机碳储量与水稻产量,且控制灌溉下增幅效果更加明显。控制灌溉处理NGHGE均显著小于常规灌溉(P<0.05),且在控制灌溉下,与对照处理相比,施入生物炭与有机肥处理NGHGE分别减少44.01%、6.38%。综合来看,控制灌溉下施入生物炭提高了水稻产量,同时增加了土壤有机碳储量,并有效减少了黑土区稻田净碳排放。该研究结果可为东北黑土区稻田制定节水、增产、固碳减排的水碳管理策略提供科学依据,对保障东北地区可持续农业发展具有重要意义。
- 薛里张忠学张忠学韩羽齐智娟李铁成杜思澄
- 关键词:节水灌溉有机肥有机碳温室气体
- 水氮耦合对黑土稻作产量与氮素吸收利用的影响被引量:10
- 2021年
- 为探明不同水氮耦合模式下黑土区水稻产量形成和氮素吸收利用的规律,设置常规淹灌(F)、浅湿灌溉(W)和控制灌溉(C)3种灌溉模式,0、85、110、135 kg/hm^(2)(N0、N1、N2、N3)4个施氮量水平,共12个处理,研究不同水氮耦合模式对水稻干物质、产量、氮素吸收转运、水氮利用效率的影响。结果表明:常规淹灌和浅湿灌溉模式下,水稻地上部各器官干物质累积量随施氮量的增加而增大,而控制灌溉模式随施氮量的增加先增大后减小;水稻地上部不同器官氮素累积量随施氮量的增加而增大,相同施氮水平,控制灌溉模式的叶、茎鞘和穗氮素累积量较常规淹灌提高了27.80%~43.42%、18.32%~24.97%、13.85%~24.25%,较浅湿灌溉提高了0.96%~13.18%、10.73%~12.86%、10.53%~12.61%;3种灌溉模式下,水稻地上部干物质、氮素累积速率均随施氮量的增加而增大,且控制灌溉模式高于浅湿灌溉和常规淹灌模式,干物质、氮素累积始盛期随施氮量增加而提前;水稻植株平均氮素累积速率达到峰值时间比平均干物质累积速率达到峰值时间提前11.39 d;相较于常规淹灌和浅湿灌溉模式,控制灌溉模式更有利于提高水稻产量,其中CN2处理产量最大,为10272.57 kg/hm^(2);控制灌溉模式显著提升氮肥农学利用效率和氮肥偏生产力;相同灌溉模式下,叶、茎鞘氮素转运率以及穗部氮素转运贡献率随施氮量增加而减小。水稻产量与灌溉水分利用效率、水分生产效率、氮肥农学利用效率、百千克籽粒吸氮量之间呈极显著正相关(P<0.01),与氮素籽粒生产效率之间呈极显著负相关(P<0.01)。适宜水氮耦合模式可提高水稻产量和氮素吸收利用,综合考虑CN2处理为最佳水氮耦合模式。
- 秦子元张忠学张忠学宋健孙迪李铁成
- 关键词:水稻黑土区水氮耦合氮素吸收利用
- 水炭运筹下水稻根系对氮素吸收利用的^(15)N示踪分析被引量:10
- 2021年
- 为揭示水炭运筹下水稻根系对氮素的吸收利用情况,采用田间小区试验与^(15)N示踪微区结合的方法,试验设置两种灌水模式(浅湿干灌溉、常规淹灌)和4个秸秆生物炭施用水平(0、2.5、12.5、25 t/hm^(2)),以常规淹灌作为对照,研究浅湿干灌溉模式施加秸秆生物炭对水稻根系形态特征和生理特性的影响,以及根系对肥料和土壤氮素的吸收利用情况。结果表明:施加秸秆生物炭改变了水稻根系形态特征和生理特性,适量的秸秆生物炭提高了根系的主根长、根体积、根鲜质量、根系活跃吸收面积、根系伤流强度和根系活力,优化了根冠比,有利于根系对氮素的吸收;浅湿干灌溉模式水稻根系对肥料-^(15)N和土壤氮素的吸收量与根系伤流强度和根系活力呈极显著正相关(P<0.01),与活跃吸收面积呈显著正相关(P<0.05),与根冠比呈显著负相关(P<0.05);浅湿干灌溉模式根系形态特征和生理特性的变化促进了水稻根系对肥料-^(15)N和土壤氮素的吸收,提高了水稻产量和氮肥利用率。其中,浅湿干灌溉模式施加12.5 t/hm^(2)秸秆生物炭处理的水稻经济产量、氮肥吸收利用率(NUE)、氮肥农学利用率(NAE)、氮肥偏生产力(NPFP)较不施加秸秆生物炭处理分别提高了13.05%、30.54%、11.67%和13.05%。本研究可为秸秆生物炭在寒地黑土区稻田的应用提供理论依据和技术支撑。
- 张作合张忠学张忠学秦子元李铁成宋健
- 关键词:稻田根冠比同位素示踪技术
- 水氮耦合下黑土区稻田生态系统碳源汇效应分析被引量:3
- 2023年
- 为探寻不同水氮耦合方式对黑土区稻田生态系统碳平衡的影响,于2022年开展田间试验,试验设置常规淹灌(F)和稻作控制灌溉(C)两种灌溉模式,同时设置常规施氮水平(N,110 kg/hm~2)、减氮10%水平(N1,99 kg/hm~2)、减氮20%水平(N2,88 kg/hm~2)3种施氮水平,分析不同水氮耦合方式对水稻各器官干物质量、碳含量、稻田土壤呼吸CO_(2)排放通量和CH_(4)排放通量及两者排放总量的影响,并采用净生态系统碳收支(NECB)评价体系对黑土区稻田生态系统碳源汇效应进行分析。结果表明:不同水氮耦合方式下,各处理水稻穗固碳量与根固碳量分别占其总固碳量的26.61%~40.92%、24.63%~31.95%。相同施氮量下,稻作控制灌溉相较于常规灌溉能提高水稻各器官碳含量、干物质量。在水稻全生育期内,各处理CH_(4)排放通量呈现先增加后减小再增加的变化趋势,均在分蘖期与拔节孕穗期出现峰值;各处理土壤呼吸CO_(2)排放通量呈现单峰变化,在分蘖期出现峰值。相同灌溉模式下,除返青期外,各处理CH_(4)排放通量与土壤呼吸CO_(2)排放通量均随施氮量的减少而降低。相同施氮量下,稻作控制灌溉与常规灌溉相比降低了土壤呼吸CO_(2)排放通量及排放总量,但提高了CH_(4)排放通量及排放总量。不同水氮耦合方式下,水稻净初级生产力为4245.82~6958.19 kg/hm~2,穗净初级生产力最高、凋落物净初级生产力最低,分别占其水稻净初级生产力的42.88%~51.82%、3.19%~3.90%。相同施氮量下,稻作控制灌溉模式各处理水稻净初级生产力均大于常规灌溉模式,其中CN、CN1、CN2各处理净初级生产力较FN、FN1、FN2各处理分别增加11.17%、31.92%、2.98%。此外,不同水氮耦合方式下NECB均为正值,表示该黑土区稻田生态系统为净碳“汇”,其中CN1处理净碳收支(1082.87 kg/hm~2)显著高于其他各处理(P<0.05),这说明稻作控制灌溉模式下减氮10%处理的稻田生态系统�
- 张忠学张忠学李铁成齐智娟李铁成周欣
- 关键词:水氮耦合净初级生产力
- 水炭运筹对黑土稻田N_(2)O排放与氮肥利用的影响被引量:6
- 2021年
- 为揭示水炭运筹下稻田N_(2)O排放规律,以及各阶段施入氮肥的利用和损失对N_(2)O排放的影响,设置两种水分管理模式(浅湿干灌溉、常规淹灌)和4个秸秆生物炭施用量水平(0、2.5、12.5、25 t/hm^(2)),采用田间小区和15N示踪微区结合的方法,研究不同水炭运筹下稻田N_(2)O排放规律,以及基肥、蘖肥和穗肥的吸收利用率和损失率,并分析了N_(2)O排放量与各阶段施入氮肥的利用率和损失率之间的关系。结果表明:两种灌溉模式水稻本田生长期N_(2)O排放规律不同,浅湿干灌溉模式N_(2)O累积排放量显著高于常规淹灌模式(P<0.05),施加生物炭能够有效地减少水稻本田生长期N_(2)O排放总量。两种灌溉模式在分蘖期和拔节孕穗期N_(2)O累积排放量较大,浅湿干灌溉模式的各生育期N_(2)O累积排放量均高于常规淹灌,施加生物炭降低了N_(2)O各生育期累积排放量。浅湿干灌溉模式水稻植株对基肥的吸收利用率低于常规淹灌模式,而对蘖肥和穗肥的吸收利用率显著高于常规淹灌(P<0.05),施加适量的生物炭能够增加各阶段施入氮肥的吸收利用率。相关性分析表明,浅湿干灌溉模式下N_(2)O排放总量与蘖肥、穗肥吸收利用率呈显著负相关(P<0.05),与基肥吸收利用率呈极显著负相关(P<0.01),常规淹灌模式下N_(2)O排放总量与基肥、蘖肥和穗肥吸收利用率均呈极显著负相关(P<0.01);两种灌溉模式N_(2)O排放总量与基肥和蘖肥损失率均达到显著正相关(P<0.05)。
- 张作合张忠学张忠学齐智娟李铁成郑丽颖
- 关键词:稻田氧化亚氮同位素示踪技术
- 秸秆还田配施氮肥对黑土玉米田土壤CO_(2)排放与碳平衡的影响被引量:2
- 2024年
- 为探寻不同秸秆还田方式配施氮肥对黑土玉米田土壤CO_(2)排放与碳平衡的影响,于2023年开展大田试验,设置秸秆离田(S0,对照)、秸秆覆盖还田(S1)、秸秆旋耕还田(S2)3种秸秆还田方式,同时设置常规施加氮肥(N,250kg/hm^(2))与不施加氮肥(W,0kg/hm^(2),对照)2种施氮模式,共计6个处理。测定不同处理下玉米生育期土壤CO_(2)排放通量以及玉米收获后土壤有机碳(SOC)、可溶性有机碳(DOC)、微生物量碳(MBC)含量,探究土壤CO_(2)累积排放量与SOC、DOC、MBC含量的关系,并分析黑土玉米田生态系统碳平衡状况。结果表明:各处理中土壤CO_(2)累积排放量从大到小依次为S2N、S1N、S0N、S2W、S1W、S0W,其中S2N处理土壤CO_(2)累积排放量较S0W处理显著增加70.31%(P<0.05)。在相同施氮模式下,秸秆还田能够有效增加SOC、DOC、MBC含量,且土壤CO_(2)累积排放量与SOC、DOC、MBC含量呈正相关关系。不同秸秆还田方式配施氮肥下,S1N处理玉米产量最高,为13534.4kg/hm^(2),作物碳排放速率最低,为0.122kg/kg。不同秸秆还田方式配施氮肥下黑土玉米田生态系统碳平衡值均为正值,表现为较强的碳“汇”,其中S1N处理碳平衡值和土壤固碳潜力最大,较其他处理分别增加13.12%~94.05%、3.49%~25.32%。综上所述,在本试验条件下,秸秆覆盖还田+常规施氮(S1N处理)可以实现黑土玉米田土壤固碳减排和作物增产目的。
- 齐智娟齐智娟张忠学宋芳张忠学孙嘉璐
- 关键词:玉米田黑土秸秆还田碳平衡
- 水氮耦合对黑土稻田土壤呼吸与碳平衡的影响被引量:21
- 2020年
- 为探明不同水氮耦合方式对东北黑土区稻田碳循环的影响,以黑龙江省黑土稻田为研究对象,于2018年进行大田试验,试验设置常规灌溉(F)与控制灌溉(C)两种灌水方式,全生育期施氮量设置0、85、110、135 kg/hm24个水平(N0、N1、N2、N3),测定了8种不同水氮耦合方式下水稻不同生育期平均土壤呼吸速率、微生物呼吸速率和根呼吸速率的变化以及水稻收获后各器官的固碳量。结果表明,水稻植株总固碳量为446.49~716.92 g/m2,各处理水稻收获后各器官固碳量从大到小依次为穗、茎、叶、根,分别占植株总固碳量的53.69%~59.44%、27.42%~30.12%、7.24%~8.96%、4.71%~8.35%。控制灌溉模式能提高水稻植株固碳量,其中CN2处理的总固碳量最大。相同施氮量、控制灌溉模式下,茎、叶、根固碳量均大于常规灌溉模式,除CN0处理穗固碳量低于FN0处理外,其余相同施氮量、控制灌溉模式下的穗固碳量均大于常规灌溉模式。不同水氮耦合方式下,水稻从返青期至乳熟期各生育期平均土壤呼吸速率、微生物呼吸速率、根呼吸速率均呈先升高、后降低的趋势,且均在分蘖期达到峰值。除返青期外,与不施肥处理相比,施肥后各生育期平均土壤呼吸速率、微生物呼吸速率和根呼吸速率均增大,且随着施氮量的增加而增大。控制灌溉模式下各施氮量处理水稻各生育期(除返青期外)平均土壤呼吸速率、微生物呼吸速率和根呼吸速率均高于常规灌溉模式下相同施氮量处理。8种不同水氮耦合方式下黑土稻田均表现为较强的碳“汇”,控制灌溉模式能够增加碳“汇”强度,其中CN2处理碳“汇”强度最大。本研究结果可为提高黑土稻田固碳减排潜力提供理论基础,为估算区域乃至全球碳平衡提供数据支撑。
- 张忠学张忠学齐智娟李铁成聂堂哲齐智娟
- 关键词:水氮耦合土壤呼吸固碳量碳排放量碳平衡
- 水炭运筹下稻田土壤氮素分布与盈亏15N示踪分析被引量:7
- 2020年
- 为揭示水炭运筹下铵态氮、硝态氮在不同土层的分布规律和土壤氮素在水稻植株中的分布规律,设置两种水分管理模式(浅湿干灌溉、常规淹灌)和4个秸秆生物炭施用量水平(0、2.5、12.5、25 t/hm2),采用田间小区和15N示踪微区结合的方法,研究了不同水炭运筹下0~60 cm土层NH+4-N、NO-3-N和肥料NH+4-15N、NO-3-15N的累积分布,以及土壤氮素在水稻植株中的分布情况,并计算了不同水炭运筹下的土壤盈亏状况。试验结果表明:浅湿干灌溉模式下,稻田土壤中的NH+4-N累积量随土层深度的增加而减小,施加适量的秸秆生物炭增加了0~20 cm土层NH+4-N、NO-3-N累积量,同时减少了20~60 cm土层的累积量。相同秸秆生物炭施用水平下,浅湿干灌溉模式0~20 cm土层中NH+4-N、NO-3-N累积量和肥料NH+4-15N、NO-3-15N累积量均高于常规淹灌模式,浅湿干灌溉模式20~40 cm和40~60 cm土层NO-3-15N累积量较常规淹灌模式显著降低(P<0.05)。浅湿干灌溉模式积累的土壤氮素有9.79%~13.96%分布在植株叶片,15.71%~20.03%分布在植株茎鞘,66.00%~74.50%分布在植株穗部。综合考虑寒地黑土区土壤氮库盈亏平衡,浅湿干灌溉模式施加12.5 t/hm2秸秆生物炭的水炭运筹模式最优。
- 张作合张忠学张忠学李铁成韩羽李铁成
- 关键词:稻田铵态氮同位素示踪技术
- 控制灌溉下秸秆还田对稻田土壤氮素组成的影响被引量:20
- 2019年
- 为探明控制灌溉模式下秸秆还田与不同施氮量对稻田表层土壤氮素组成的影响,以黑龙江省寒地黑土为研究对象,于2017—2018年进行了田间连续定位试验,试验秸秆还田量设置为有秸秆还田(还田量为6 t/hm^2)和无秸秆还田2个水平,全生育期施氮量设置N0(0 kg/hm^2)、N1(85 kg/hm^2)、N2(110 kg/hm^2)和N3(135 kg/hm^2)4个水平,共8个处理。基于氮稳定性同位素技术,分析了秸秆还田后,稻田土壤表层总可溶性氮组分分配比例,铵态氮(NH4^+-N)、硝态氮(NO3^--N)、可溶性有机氮(SON)、δ15 N含量变化以及与土壤表层总可溶性氮含量的相关性。2年结果表明:控制灌溉模式下,秸秆还田提高了土壤表层可溶性有机氮占总可溶性氮的比例、氮矿化量以及δ15 N含量。施加秸秆各施氮量处理土壤表层SON含量均低于无秸秆处理,其中N3处理土壤表层NH4^+-N与NO3^--N含量较无秸秆N3处理分别降低40.3%、38.7%。与无秸秆处理相比,秸秆还田不仅提高了土壤供氮能力,而且促进了土壤表层总可溶性氮以较稳定的可溶性有机氮形态存在,当施氮量仅为0 kg/hm^2时,土壤表层氮矿化量与无秸秆处理最高氮矿化量无显著性差异,且随着施氮量的增加,土壤表层氮矿化量显著高于无秸秆处理(P<0.05)。秸秆中δ15 N含量高,促使土壤表层富集δ15 N,施加秸秆N1、N2处理土壤表层δ15 N含量与无秸秆N2、N3处理无显著性差异,N3处理土壤表层δ15 N含量显著高于无秸秆处理(P<0.05),而且连续2年秸秆还田,导致土壤表层总可溶性氮与铵态氮(NH4^+-N)、硝态氮(NO3^--N)、可溶性有机氮(SON)以及δ15 N的相关性发生变化。研究结果可为东北地区推行秸秆还田的可行性提供科学依据,对保障东北地区农业水土资源可持续利用具有重要意义。
- 张忠学张忠学齐智娟李铁成陈鹏齐智娟
- 关键词:稻田土壤控制灌溉铵态氮硝态氮可溶性有机氮