为了实现霉变稻谷脂肪酸含量无损、快速检测,该文研究应用可见/近红外光谱技术检测霉变稻谷的脂肪酸含量。考虑到直接选用霉变稻谷可见/近红外光谱数据构建脂肪酸含量预测模型存在建模费时、预测失准等问题,研究提出了霉变稻谷脂肪酸含量的可见/近红外优化校正模型。研究中通过光谱-理化值共生距离(sample set partitioning based on joint xy distance,SPXY)算法结合偏最小二乘法初步分析了不同校正集样本预测霉变稻谷脂肪酸含量的差异;利用连续投影算法(SPA)提取了反映霉变稻谷脂肪酸含量变化的特征波段;采用偏最小二乘法(partial least square,PLS)和多元线性回归法(multivariable linear regression,MLR)分别建立了基于特征波段光谱反射值的霉变稻谷脂肪酸含量预测模型,并对比分析了采用SPXY样本集划分的模型预测效果。结果表明:采用SPXY法筛选出的65个校正集样本分布与初始校正集相近,脂肪酸含量变化范围为18.55~127.26 mg,其标准差为32.39;SPA算法最终从256个全光谱波段中优选出9个特征波段,实现了光谱数据的压缩;分别建立的SPXY-SPA-PLSR模型和SPXY-SPA-MLR模型预测霉变稻谷脂肪酸含量相关系数RP为0.922 1和0.915 9,预测均方根误差RMSEP为13.889 3和14.261 0;SPXY筛选校正集所构建模型预测精度与初始校正集所建模型相当,但校正集样本数量减少为初始校正集的41%,运算时长缩短为初始样本集的32%,提高了模型的校正速度。