丁建华
- 作品数:4 被引量:29H指数:3
- 供职机构:东北林业大学工程技术学院更多>>
- 发文基金:中央高校基本科研业务费专项资金国家自然科学基金国家林业公益性行业科研专项更多>>
- 相关领域:农业科学更多>>
- 星载LiDAR与HJ-1A/HSI高光谱数据联合估测区域森林冠层高度被引量:11
- 2016年
- 【目的】将ICESat-GLAS波形数据与HJ-1A/HSI高光谱数据联合,借助HSI高光谱数据提供的连续高分辨率光谱信息,实现区域森林冠层高度的估测,降低由于GLAS光斑呈离散条带状分布无法覆盖整个研究区造成的估测误差。【方法】首先,从平滑后的ICESat-GLAS波形数据中提取波形参数(波形长度W和地形坡度参数TS),基于W和TS建立GLAS森林冠层高度估测模型,并利用此模型计算研究区所有GLAS光斑内的森林冠层高度;然后,采用最小噪声分离法(MNF)对HJ-1A/HSI高光谱数据进行降维,提取前3个MNF分量(MNF1,MNF2,MNF3);最后,基于支持向量回归机(SVR)算法,利用GLAS估测的森林冠层高度和3个MNF分量建立区域森林冠层高度SVR估测模型,并估测研究区内无GLAS光斑覆盖区域的森林冠层高度,生成森林冠层高度分布图。【结果】从ICESat-GLAS波形数据中提取的地形坡度参数TS与野外实测地形坡度具有显著线性关系(R2=0.78);基于W和TS建立的GLAS森林冠层高度估测模型的R^2=0.78,RMSE=2.51 m,模型验证的R^2=0.85,RMSE=1.67 m;基于支持向量回归机算法建立的SVR模型建模的R2=0.70,RMSE=3.62 m,模型验证的R2=0.67,RMSE=4.42 m。采用野外数据对最终得到的森林冠层高度分布图的估测误差进行分析,结果估测误差最大值为7.10 m,最小值为0.07 m,平均值为1.78 m,估测误差的标准差为1.49 m,Q1为0.75 m,Q3为2.31 m。【结论】从ICESat-GLAS波形数据中提取的地形坡度参数TS能够很好地反映地形坡度的变化,本研究建立的线性关系模型可克服对数关系模型在平坦地区解释困难的问题。基于支持向量回归机算法,将ICESat-GLAS波形数据与HJ-1A/HSI高光谱数据联合,可克服ICESat-GLAS由于光斑呈离散条带状分布无法实现区域森林冠层高度估测的不足,实现对区域森林冠层高度的高精度估测。
- 邱赛邢艳秋田静丁建华
- 关键词:坡度支持向量回归机
- 星载大光斑LiDAR与HJ-1A高光谱数据联合估测区域森林地上生物量被引量:11
- 2016年
- 以吉林省汪清林业局经营区为研究区,利用HJ-1A/HSI高光谱数据和ICESat-GLAS波形数据,估测区域森林地上生物量。从平滑后的GLAS波形数据中提取波形长度W和地形坡度参数TS,建立GLAS森林最大树高估测模型;从GLAS波形数据中提取能量参数I(植被回波能量Ev和回波总能量E之比),建立GLAS森林郁闭度估测模型;利用GLAS估测的森林最大树高和森林郁闭度联合建立森林地上生物量模型。由于GLAS呈离散条带状分布,无法实现区域估测,因此研究将GLAS波形数据与HJ-1A/HSI高光谱数据联合,基于支持向量回归机算法实现森林地上生物量区域估测,得到研究区森林地上生物量分布图。研究结果显示,基于W和TS建立的GLAS森林最大树高估测模型的adj.R^2=0.78,RMSE=2.51m,模型验证的adj.R^2=0.85,RMSE=1.67m。地形坡度参数TS能够有效的降低地形坡度的影响;当林下植被高度为2m时,得到的基于参数I建立的GLAS森林郁闭度估测模型效果最好,模型的adj.R^2=0.64,RMSE=0.13,模型验证的adj.R^2=0.65,RMSE=0.12。利用森林最大树高和森林郁闭度建立的森林地上生物量模型的adj.R^2=0.62,RMSE=10.88 t/hm^2,模型验证的adj.R^2=0.60,RMSE=11.52 t/hm^2。基于支持向量回归机算法,利用HJ-1A/HSI和GLAS数据建立的森林地上生物量SVR模型,生成了森林地上生物量分布图,利用野外数据对得到的分布图进行验证,验证结果显示森林地上生物量估测值与实测值存在很强的线性关系(adj.R^2=0.62,RMSE=11.11 t/hm^2),能够满足林业应用的需要。因此联合ICESat-GLAS波形数据与HJ-1A高光谱数据,能够提高区域森林地上生物量的估测精度。
- 邱赛邢艳秋徐卫华丁建华田静
- 关键词:森林郁闭度支持向量回归算法