您的位置: 专家智库 > >

丁鑫鑫

作品数:2 被引量:5H指数:1
供职机构:四川大学计算机学院更多>>
发文基金:国家自然科学基金更多>>
相关领域:自动化与计算机技术环境科学与工程更多>>

文献类型

  • 2篇中文期刊文章

领域

  • 1篇自动化与计算...
  • 1篇环境科学与工...

主题

  • 2篇群算法
  • 2篇子群
  • 2篇粒子群
  • 2篇粒子群算法
  • 1篇搜索
  • 1篇重分布
  • 1篇分层搜索
  • 1篇并行粒子群算...

机构

  • 2篇四川大学

作者

  • 2篇徐开阔
  • 2篇唐常杰
  • 2篇丁鑫鑫
  • 2篇张培颂
  • 1篇刘齐宏
  • 1篇曾涛
  • 1篇白兰东

传媒

  • 2篇四川大学学报...

年份

  • 1篇2008
  • 1篇2007
2 条 记 录,以下是 1-2
排序方式:
基于最佳粒子共享和分层搜索的并行粒子群优化算法被引量:4
2008年
为提高粒子群优化算法在优化问题中的效率,本文提出了并行粒子群优化算法(BLP-SO).基本思想是并行机制+最佳粒子共享+分层搜索.主要工作包括(1)信息共享机制中引入了区域学习,使粒子更新能参考其他粒子的信息;(2)提出了粒子群两层划分模型,底层利于扩大搜索范围,上层利于全局精细搜索;(3)证明了关于粒子群和并行粒子群收敛性定理;(4)在4个基准函数上的优化实验表明,新方法比经典的IPPSO并行粒子群算法在解的精度上提高了51.93%到96.10%.
丁鑫鑫唐常杰曾涛张培颂徐开阔刘齐宏
关键词:并行粒子群算法分层搜索
基于划分和重分布的粒子群算法及优化策略被引量:1
2007年
提出了一种新的基于划分和重分布的粒子群优化算法.新算法将粒子划分为普通和优化两类.普通粒子随机产生,速度快,侧重全局搜索;优化粒子紧随群体最优并且速度较慢,侧重局部收敛,以提高收敛精度.当群体最优未发生变更的时间过长时,在保持群体最优的同时将粒子重新分布,以摆脱过早的局部收敛.对典型函数的测试结果表明,新算法没有增加复杂度,在摆脱解的早熟和提高解的收敛精度等方面优于基本粒子群算法.
张培颂唐常杰丁鑫鑫徐开阔白兰东
关键词:粒子群算法重分布
共1页<1>
聚类工具0