MCMC(Markov Chain Monte Carlo,MCMC)方法采用顺序改变表征像素类属性的标号变量值会导致算法运算时间长、收敛速度慢等问题。为此,本文提出并行化改变像素标号值的MCMC方案,在贝叶斯推理框架下,依据高斯分布及MRF(Markov Random Field,MRF)模型建立SAR(Synthetic Aperture Radar,SAR)影像分割模型,设计实现基于多线程的并行采样方案;为了解决MRF标号场中邻域像素标号相关性问题,提出独立的像素并行采样的准则;同时,限制并行线程的数量,以保证采样的随机性。运用传统的串行算法和提出的并行算法对模拟和真实SAR影像进行影像分割实验;定性和定量的时间和精度评价结果表明:该方案在不影响分割精度的前提下大幅缩短影像分割时间,提高了效率。